GSTDTAP

浏览/检索结果: 共82条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Nature Geoscience刊文呼吁人工智能和地球科学界之间应开展互惠互利的合作 快报文章
地球科学快报,2024年第22期
作者:  刘文浩
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:606/0  |  提交时间:2024/11/25
AI  Earth science  mutual benefit  
世界银行发布地热能社会经济效益相关报告 快报文章
气候变化快报,2024年第4期
作者:  秦冰雪
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:667/0  |  提交时间:2024/02/20
Geothermal Energy  Socioeconomic Benefit  
加拿大研究提出临时碳储存气候效益核算的方法 快报文章
气候变化快报,2023年第18期
作者:  刘莉娜
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:380/0  |  提交时间:2023/09/19
Climate Benefit  Carbon Storage  Nature  
美国发布首个生态系统服务效益-成本分析的核算指南 快报文章
资源环境快报,2023年第16期
作者:  牛艺博
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:576/0  |  提交时间:2023/09/01
USA  Ecosystem Services  Benefit-cost Analyses  
全球红树林联盟发布《2022年世界红树林状况》报告 快报文章
资源环境快报,2022年第19期
作者:  裴惠娟
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:681/1  |  提交时间:2022/10/14
Mangroves  State  Benefit  
Biodiversity conservation in a dynamic world may lead to inefficiencies due to lock-in effects and path dependence 期刊论文
ECOLOGICAL ECONOMICS, 2020, 173
作者:  Drechsler, Martin;  Waetzold, Frank
收藏  |  浏览/下载:24/0  |  提交时间:2020/08/18
Dynamic optimisation  Ecological-economic model  Ecological benefit  Economic cost  Efficiency  Resource allocation  
Comparing the economic value of virtual water with volumetric and stress-weighted approaches: A case for the tea supply chain 期刊论文
ECOLOGICAL ECONOMICS, 2020, 172
作者:  Lowe, Benjamin H.;  Oglethorpe, David R.;  Choudhary, Sonal
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/02
Benefit transfer  Economic value of water  Stress-weighted water footprint  Supply chain management  Virtual water  Water footprint  
An assessment of energy vulnerability in Small Island Developing States 期刊论文
ECOLOGICAL ECONOMICS, 2020, 171
作者:  Genave, Anna;  Blancard, Stephane;  Garabedian, Sabine
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/02
Energy vulnerability  SIDS  Composite index  Energy security  Multi-Layer Benefit-of-the-Doubt Model  
An acute immune response underlies the benefit of cardiac stem cell therapy 期刊论文
NATURE, 2020, 577 (7790) : 405-+
作者:  Schmacke, Niklas A.;  Hornung, Veit
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Clinical trials using adult stem cells to regenerate damaged heart tissue continue to this day(1,2), despite ongoing questions of efficacy and a lack of mechanistic understanding of the underlying biological effect(3). The rationale for these cell therapy trials is derived from animal studies that show a modest but reproducible improvement in cardiac function in models of cardiac ischaemic injury(4,5). Here we examine the mechanistic basis for cell therapy in mice after ischaemia-reperfusion injury, and find that-although heart function is enhanced-it is not associated with the production of new cardiomyocytes. Cell therapy improved heart function through an acute sterile immune response characterized by the temporal and regional induction of CCR2(+) and CX3CR1(+) macrophages. Intracardiac injection of two distinct types of adult stem cells, cells killed by freezing and thawing or a chemical inducer of the innate immune response all induced a similar regional accumulation of CCR2(+) and CX3CR1(+) macrophages, and provided functional rejuvenation to the heart after ischaemia-reperfusion injury. This selective macrophage response altered the activity of cardiac fibroblasts, reduced the extracellular matrix content in the border zone and enhanced the mechanical properties of the injured area. The functional benefit of cardiac cell therapy is thus due to an acute inflammatory-based wound-healing response that rejuvenates the infarcted area of the heart.


  
Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform 期刊论文
NATURE, 2020
作者:  Touat, Mehdi;  Li, Yvonne Y.;  Boynton, Adam N.;  Spurr, Liam F.;  Iorgulescu, J. Bryan;  Bohrson, Craig L.;  Cortes-Ciriano, Isidro;  Birzu, Cristina;  Geduldig, Jack E.;  Pelton, Kristine;  Lim-Fat, Mary Jane;  Pal, Sangita;  Ferrer-Luna, Ruben;  Ramkissoon, Shakti H.;  Dubois, Frank;  Bellamy, Charlotte;  Currimjee, Naomi;  Bonardi, Juliana;  Qian Kenin;  Ho, Patricia;  Malinowski, Seth;  Taquet, Leon;  Jones, Robert E.;  Shetty, Aniket;  Chow, Kin-Hoe;  Sharaf, Radwa;  Pavlick, Dean;  Albacker, Lee A.;  Younan, Nadia;  Baldini, Capucine;  Verreault, Maite;  Giry, Marine;  Guillerm, Erell;  Ammari, Samy;  Beuvon, Frederic;  Mokhtari, Karima;  Alentorn, Agusti;  Dehais, Caroline;  Houillier, Caroline;  Laigle-Donadey, Florence;  Psimaras, Dimitri;  Lee, Eudocia Q.;  Nayak, Lakshmi;  McFaline-Figueroa, J. Ricardo;  Carpentier, Alexandre;  Cornu, Philippe;  Capelle, Laurent;  Mathon, Bertrand;  Barnholtz-Sloan, Jill S.;  Chakravarti, Arnab;  Bi, Wenya Linda;  Chiocca, E. Antonio;  Fehnel, Katie Pricola;  Alexandrescu, Sanda;  Chi, Susan N.;  Haas-Kogan, Daphne;  Batchelor, Tracy T.;  Frampton, Garrett M.;  Alexander, Brian M.;  Huang, Raymond Y.;  Ligon, Azra H.;  Coulet, Florence;  Delattre, Jean-Yves;  Hoang-Xuan, Khe;  Meredith, David M.;  Santagata, Sandro;  Duval, Alex;  Sanson, Marc;  Cherniack, Andrew D.;  Wen, Patrick Y.;  Reardon, David A.;  Marabelle, Aurelien;  Park, Peter J.;  Idbaih, Ahmed;  Beroukhim, Rameen;  Bandopadhayay, Pratiti;  Bielle, Franck;  Ligon, Keith L.
收藏  |  浏览/下载:38/0  |  提交时间:2020/07/03

Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate inEscherichia coliowing to the size and occasional instability of the genome(1-3). Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of theCoronaviridae,FlaviviridaeandPneumoviridaefamilies. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step inSaccharomyces cerevisiaeusing transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)(4), which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.


A yeast-based synthetic genomics platform is used to reconstruct and characterize large RNA viruses from synthetic DNA fragments  this technique will facilitate the rapid analysis of RNA viruses, such as SARS-CoV-2, during an outbreak.