GSTDTAP

浏览/检索结果: 共32条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation 期刊论文
NATURE, 2020, 581 (7807) : 184-+
作者:  Liang, Guanxiang;  Zhao, Chunyu;  Zhang, Huanjia;  Mattei, Lisa;  Sherrill-Mix, Scott;  Bittinger, Kyle;  Kessler, Lyanna R.;  Wu, Gary D.;  Baldassano, Robert N.;  DeRusso, Patricia;  Ford, Eileen;  Elovitz, Michal A.;  Kelly, Matthew S.;  Patel, Mohamed Z.;  Mazhani, Tiny;  Gerber, Jeffrey S.;  Kelly, Andrea;  Zemel, Babette S.;  Bushman, Frederic D.
收藏  |  浏览/下载:17/0  |  提交时间:2020/05/20

A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog(1,2), but how it occurs in cities is often puzzling(3). If the growth rates of urban particles are similar to those found in cleaner environments (1-10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below -15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid-base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms(4,5).


  
Aircraft observed diurnal variations of the planetary boundary layer under heat waves 期刊论文
ATMOSPHERIC RESEARCH, 2020, 235
作者:  Zhang, Yuanjie;  Wang, Liang;  Santanello, Joseph A.;  Pan, Zaitao;  Gao, Zhiqiu;  Li, Dan
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
Planetary boundary layer  Heat wave  AMDAR  WVSS  Atmospheric circulation  
The 2019 Mississippi and Missouri River Flooding and Its Impact on Atmospheric Boundary Layer Dynamics 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Pal, Sandip;  Lee, Temple R.;  Clark, Nicholas E.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
atmospheric boundary layer  land-atmosphere feedback processes  flooding  rawinsonde  soil moisture  boundary layer features  
Large Eddy Simulation on Horizontal Convective Rolls that Caused an Aircraft Accident during its Landing at Narita Airport 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (6)
作者:  Ito, J.;  Niino, H.;  Yoshino, K.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
aircraft accident  aviation meteorology  atmospheric boundary layer  horizontal convective roll  large Eddy simulation  numerical weather prediction  
Observations of Greenhouse Gas Changes Across Summer Frontal Boundaries in the Eastern United States 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (5)
作者:  Pal, Sandip;  Davis, Kenneth J.;  Lauvaux, Thomas;  Browell, Edward, V;  Gaudet, Brian J.;  Stauffer, David R.;  Obland, Michael D.;  Choi, Yonghoon;  DiGangi, Josh P.;  Feng, Sha;  Lin, Bing;  Miles, Natasha L.;  Pauly, Rebecca M.;  Richardson, Scott J.;  Zhang, Fuqing
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
atmospheric boundary layer  airborne atmospheric measurements  cold front  free troposphere  greenhouse gases  midlatitude cyclone  
Compact Operational Tropospheric Water Vapor and Temperature Raman Lidar with Turbulence Resolution 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019
作者:  Lange, D.;  Behrendt, A.;  Wulfmeyer, V.
收藏  |  浏览/下载:8/0  |  提交时间:2020/02/17
Water-Vapor and Temperature Raman lidar  Atmospheric Boundary Layer  Thermodynamic Profiler  Turbulence  Temperature inversion layers  
The Importance of Systematic Spatial Variability in the Surface Heat Flux of a Large Lake: A Multiannual Analysis for Lake Geneva 期刊论文
WATER RESOURCES RESEARCH, 2019, 55 (12) : 10248-10267
作者:  Rahaghi, A. I.;  Lemmin, U.;  Cimatoribus, A. A.;  Barry, D. A.
收藏  |  浏览/下载:6/0  |  提交时间:2020/02/16
Surface heat flux  meteorological forcing  spatial variability  Lake Geneva  atmospheric boundary layer stability  heat content  
Vertical Profiling of Aerosols With a Combined Raman-Elastic Backscatter Lidar in the Remote Southern Ocean Marine Boundary Layer (43-66 degrees S, 132-150 degrees E) 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (22) : 12107-12125
作者:  Alexander, S. P.;  Protat, A.
收藏  |  浏览/下载:9/0  |  提交时间:2020/02/17
Southern Ocean  aerosol  atmospheric boundary layer  Raman lidar  
Turbulent electric current in the marine convective atmospheric boundary layer 期刊论文
ATMOSPHERIC RESEARCH, 2019, 228: 86-94
作者:  Anisimov, S. V.;  Galichenko, S. V.;  Prokhorchuk, A. A.;  Aphinogenov, K. V.;  Kozmina, A. S.
收藏  |  浏览/下载:9/0  |  提交时间:2019/11/27
Atmospheric electricity  Marine atmospheric boundary layer  Turbulent electric current  Space charge  Lagrangian stochastic model  
A Three-Dimensional Array for the Study of Infrasound Propagation Through the Atmospheric Boundary Layer 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (16) : 9299-9313
作者:  Smink, Madelon M. E.;  Assink, Jelle D.;  Bosveld, Fred C.;  Smets, Pieter S. M.;  Evers, Laeslo G.
收藏  |  浏览/下载:6/0  |  提交时间:2019/11/27
infrasound  atmospheric boundary layer  array processing  propagation modeling  atmospheric models