GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
Coherent laser spectroscopy of highly charged ions using quantum logic 期刊论文
NATURE, 2020, 578 (7793) : 60-+
作者:  Oh, Myoung Hwan;  Cho, Min Gee;  Chung, Dong Young;  Park, Inchul;  Kwon, Youngwook Paul;  Ophus, Colin;  Kim, Dokyoon;  Kim, Min Gyu;  Jeong, Beomgyun;  Gu, X. Wendy;  Jo, Jinwoung;  Yoo, Ji Mun;  Hong, Jaeyoung;  McMains, Sara;  Kang, Kisuk;  Sung, Yung-Eun;  Alivisatos, A. Paul;  Hyeon, Taeghwan
收藏  |  浏览/下载:53/0  |  提交时间:2020/07/03

Precision spectroscopy of atomic systems(1) is an invaluable tool for the study of fundamental interactions and symmetries(2). Recently, highly charged ions have been proposed to enable sensitive tests of physics beyond the standard model(2-5) and the realization of high-accuracy atomic clocks(3,5), owing to their high sensitivity to fundamental physics and insensitivity to external perturbations, which result from the high binding energies of their outer electrons. However, the implementation of these ideas has been hindered by the low spectroscopic accuracies (of the order of parts per million) achieved so far(6-8). Here we cool trapped, highly charged argon ions to the lowest temperature reported so far, and study them using coherent laser spectroscopy, achieving an increase in precision of eight orders of magnitude. We use quantum logic spectroscopy(9,10) to probe the forbidden optical transition in Ar-40(13+) at a wavelength of 441 nanometres and measure its excited-state lifetime and g-factor. Our work unlocks the potential of highly charged ions as ubiquitous atomic systems for use in quantum information processing, as frequency standards and in highly sensitive tests of fundamental physics, such as searches for dark-matter candidates(11) or violations of fundamental symmetries(2).


The precision of laser spectroscopy of highly charged ions is improved by eight orders of magnitude by cooling trapped, highly charged ions and using quantum logic spectroscopy, thereby enabling tests of fundamental physics.


  
Last appearance of Homo erectus at Ngandong, Java, 117,000-108,000 years ago 期刊论文
NATURE, 2020, 577 (7790) : 381-+
作者:  Haldane, Andy
收藏  |  浏览/下载:30/0  |  提交时间:2020/04/16

Homo erectus is the founding early hominin species of Island Southeast Asia, and reached Java (Indonesia) more than 1.5 million years ago(1,2). Twelve H. erectus calvaria (skull caps) and two tibiae (lower leg bones) were discovered from a bone bed located about 20 m above the Solo River at Ngandong (Central Java) between 1931 and 1933(3,4), and are of the youngest, most-advanced form of H. erectus(5-8). Despite the importance of the Ngandong fossils, the relationship between the fossils, terrace fill and ages have been heavily debated(9-14). Here, to resolve the age of the Ngandong evidence, we use Bayesian modelling of 52 radiometric age estimates to establish-to our knowledg-the first robust chronology at regional, valley and local scales. We used uranium-series dating of speleothems to constrain regional landscape evolution  luminescence, (40)argon/(39)argon (Ar-40/Ar-39) and uranium-series dating to constrain the sequence of terrace evolution  and applied uranium-series and uranium series-electron-spin resonance (US-ESR) dating to non-human fossils to directly date our re-excavation of Ngandong(5,15). We show that at least by 500 thousand years ago (ka) the Solo River was diverted into the Kendeng Hills, and that it formed the Solo terrace sequence between 316 and 31 ka and the Ngandong terrace between about 140 and 92 ka. Non-human fossils recovered during the re-excavation of Ngandong date to between 109 and 106 ka (uranium-series minimum)(16) and 134 and 118 ka (US-ESR), with modelled ages of 117 to 108 thousand years (kyr) for the H. erectus bone bed, which accumulated during flood conditions(3,17). These results negate the extreme ages that have been proposed for the site and solidify Ngandong as the last known occurrence of this long-lived species.


  
Semiannual Oscillation of the Lunar Exosphere: Implications for Water and Polar Ice 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (15) : 7409-7416
作者:  Hodges, R. Richard, Jr.
收藏  |  浏览/下载:3/0  |  提交时间:2019/04/09
Moon  argon-40  exosphere  semidraconic oscillation  cold traps