GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
A general carbonyl alkylative amination for tertiary amine synthesis 期刊论文
NATURE, 2020
作者:  Ouyang, David;  He, Bryan;  Ghorbani, Amirata;  Yuan, Neal;  Ebinger, Joseph;  Langlotz, Curtis P.;  Heidenreich, Paul A.;  Harrington, Robert A.;  Liang, David H.;  Ashley, Euan A.;  Zou, James Y.
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

The ubiquity of tertiary alkylamines in pharmaceutical and agrochemical agents, natural products and small-molecule biological probes(1,2) has stimulated efforts towards their streamlined synthesis(3-9). Arguably the most robust method for the synthesis of tertiary alkylamines is carbonyl reductive amination(3), which comprises two elementary steps: the condensation of a secondary alkylamine with an aliphatic aldehyde to form an all-alkyl-iminium ion, which is subsequently reduced by a hydride reagent. Direct strategies have been sought for a '  higher order'  variant of this reaction via the coupling of an alkyl fragment with an alkyl-iminium ion that is generated in situ(10-14). However, despite extensive efforts, the successful realization of a '  carbonyl alkylative amination'  has not yet been achieved. Here we present a practical and general synthesis of tertiary alkylamines through the addition of alkyl radicals to all-alkyl-iminium ions. The process is facilitated by visible light and a silane reducing agent, which trigger a distinct radical initiation step to establish a chain process. This operationally straightforward, metal-free and modular transformation forms tertiary amines, without structural constraint, via the coupling of aldehydes and secondary amines with alkyl halides. The structural and functional diversity of these readily available precursors provides a versatile and flexible strategy for the streamlined synthesis of complex tertiary amines.


The synthesis of tertiary amines is achieved through a carbonyl alkylative amination reaction facilitated by visible light, in which an aldehyde and an amine condense to form an iminium ion that subsequently reacts with alkyl radical.


  
Late-stage oxidative C(sp(3))-H methylation 期刊论文
NATURE, 2020, 580 (7805) : 621-+
作者:  Fessler, Evelyn;  Eckl, Eva-Maria;  Schmitt, Sabine;  Mancilla, Igor Alves;  Meyer-Bender, Matthias F.;  Hanf, Monika;  Philippou-Massier, Julia;  Krebs, Stefan;  Zischka, Hans;  Jae, Lucas T.
收藏  |  浏览/下载:46/0  |  提交时间:2020/07/03

Frequently referred to as the '  magic methyl effect'  , the installation of methyl groups-especially adjacent (alpha) to heteroatoms-has been shown to dramatically increase the potency of biologically active molecules(1-3). However, existing methylation methods show limited scope and have not been demonstrated in complex settings(1). Here we report a regioselective and chemoselective oxidative C(sp(3))-H methylation method that is compatible with late-stage functionalization of drug scaffolds and natural products. This combines a highly site-selective and chemoselective C-H hydroxylation with a mild, functional-group-tolerant methylation. Using a small-molecule manganese catalyst, Mn(CF3PDP), at low loading (at a substrate/catalyst ratio of 200) affords targeted C-H hydroxylation on heterocyclic cores, while preserving electron-neutral and electron-rich aryls. Fluorine- or Lewis-acid-assisted formation of reactive iminium or oxonium intermediates enables the use of a mildly nucleophilic organoaluminium methylating reagent that preserves other electrophilic functionalities on the substrate. We show this late-stage C(sp(3))-H methylation on 41 substrates housing 16 different medicinally important cores that include electron-rich aryls, heterocycles, carbonyls and amines. Eighteen pharmacologically relevant molecules with competing sites-including drugs (for example, tedizolid) and natural products-are methylated site-selectively at the most electron rich, least sterically hindered position. We demonstrate the syntheses of two magic methyl substrates-an inverse agonist for the nuclear receptor RORc and an antagonist of the sphingosine-1-phosphate receptor-1-via late-stage methylation from the drug or its advanced precursor. We also show a remote methylation of the B-ring carbocycle of an abiraterone analogue. The ability to methylate such complex molecules at late stages will reduce synthetic effort and thereby expedite broader exploration of the magic methyl effect in pursuit of new small-molecule therapeutics and chemical probes.


A manganese-catalysed oxidative C(sp(3))-H methylation method allows a methyl group to be selectively installed into medicinally important heterocycles, providing a way to improve pharmaceuticals and better understand the '  magic methyl effect'  .


  
Organic Aerosol Particle Chemical Properties Associated With Residential Burning and Fog in Wintertime San Joaquin Valley (Fresno) and With Vehicle and Firework Emissions in Summertime South Coast Air Basin (Fontana) 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (18) : 10707-10731
作者:  Chen, Chia-Li;  Chen, Sijie;  Russell, Lynn M.;  Liu, Jun;  Price, Derek J.;  Betha, Raghu;  Sanchez, Kevin J.;  Lee, Alex K. Y.;  Williams, Leah;  Collier, Sonya C.;  Zhang, Qi;  Kumar, Anikender;  Kleeman, Michael J.;  Zhang, Xiaolu;  Cappa, Christopher D.
收藏  |  浏览/下载:8/0  |  提交时间:2019/04/09
organic aerosol  positive matrix factorization  aerosol mass spectrometer  amines  light-scattering single particle  
Laboratory Studies of the Role of Amines in Particle Formation, Growth and Climate 科技报告
来源:US Department of Energy (DOE). 出版年: 2015
作者:  Finlayson-Pitts, Barbara J.
收藏  |  浏览/下载:4/0  |  提交时间:2019/04/05
new particle formation, methanesulfonic acid, amines, organosulfur compounds