GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Structural basis of the activation of a metabotropic GABA receptor 期刊论文
NATURE, 2020
作者:  Montagne, Axel;  39;Orazio, Lina M.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Metabotropic gamma-aminobutyric acid receptors (GABA(B)) are involved in the modulation of synaptic responses in the central nervous system and have been implicated in neuropsychological conditions that range from addiction to psychosis(1). GABA(B)belongs to class C of the G-protein-coupled receptors, and its functional entity comprises an obligate heterodimer that is composed of the GB1 and GB2 subunits(2). Each subunit possesses an extracellular Venus flytrap domain, which is connected to a canonical seven-transmembrane domain. Here we present four cryo-electron microscopy structures of the human full-length GB1-GB2 heterodimer: one structure of its inactive apo state, two intermediate agonist-bound forms and an active form in which the heterodimer is bound to an agonist and a positive allosteric modulator. The structures reveal substantial differences, which shed light on the complex motions that underlie the unique activation mechanism of GABA(B). Our results show that agonist binding leads to the closure of the Venus flytrap domain of GB1, triggering a series of transitions, first rearranging and bringing the two transmembrane domains into close contact along transmembrane helix 6 and ultimately inducing conformational rearrangements in the GB2 transmembrane domain via a lever-like mechanism to initiate downstream signalling. This active state is stabilized by a positive allosteric modulator binding at the transmembrane dimerization interface.


Cryo-electron microscopy structures of apo, agonist- and positive allosteric modulator-bound forms of the GB1-GB2 heterodimer of the metabotropic gamma-aminobutyric acid (GABA) receptor shed light on the activation mechanism of this receptor.


  
A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds 期刊论文
NATURE, 2020, 580 (7803) : 409-+
作者:  Al-Shayeb, Basem;  Sachdeva, Rohan;  Chen, Lin-Xing;  Ward, Fred;  Munk, Patrick;  Devoto, Audra;  Castelle, Cindy J.;  Olm, Matthew R.;  Bouma-Gregson, Keith;  Amano, Yuki;  He, Christine;  Meheust, Raphael;  Brooks, Brandon;  Thomas, Alex;  Levy, Adi;  Matheus-Carnevali, Paula;  Sun, Christine;  Goltsman, Daniela S. A.;  Borton, Mikayla A.;  Sharrar, Allison;  Jaffe, Alexander L.;  Nelson, Tara C.;  Kantor, Rose;  Keren, Ray;  Lane, Katherine R.;  Farag, Ibrahim F.;  Lei, Shufei;  Finstad, Kari;  Amundson, Ronald;  Anantharaman, Karthik;  Zhou, Jinglie;  Probst, Alexander J.;  Power, Mary E.;  Tringe, Susannah G.;  Li, Wen-Jun;  Wrighton, Kelly;  Harrison, Sue;  Morowitz, Michael;  Relman, David A.;  Doudna, Jennifer A.;  Lehours, Anne-Catherine;  Warren, Lesley;  Cate, Jamie H. D.;  Santini, Joanne M.;  Banfield, Jillian F.
收藏  |  浏览/下载:67/0  |  提交时间:2020/07/03

Mycobacterium tuberculosis (Mtb) is an obligate human pathogen and the causative agent of tuberculosis(1-3). Although Mtb can synthesize vitamin B-12 (cobalamin) de novo, uptake of cobalamin has been linked to pathogenesis of tuberculosis2. Mtb does not encode any characterized cobalamin transporter(4-6)  however, the gene rv1819c was found to be essential for uptake of cobalamin(1). This result is difficult to reconcile with the original annotation of Rv1819c as a protein implicated in the transport of antimicrobial peptides such as bleomycin(7). In addition, uptake of cobalamin seems inconsistent with the amino acid sequence, which suggests that Rv1819c has a bacterial ATP-binding cassette (ABC)-exporter fold1. Here, we present structures of Rv1819c, which reveal that the protein indeed contains the ABC-exporter fold, as well as a large water-filled cavity of about 7,700 angstrom(3), which enables the protein to transport the unrelated hydrophilic compounds bleomycin and cobalamin. On the basis of these structures, we propose that Rv1819c is a multi-solute transporter for hydrophilic molecules, analogous to the multidrug exporters of the ABC transporter family, which pump out structurally diverse hydrophobic compounds from cells(8-11).


  
Obligate to facultative shift of two epiphytic Lepisorus species during subtropical forest degradation: Insights from functional traits 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2019, 435: 66-76
作者:  Chen, Quan;  Lu, Hua-Zheng;  Liu, Wen-Yao;  Wu, Yi;  Song, Liang;  Li, Su
收藏  |  浏览/下载:18/0  |  提交时间:2019/04/09
Epiphytic fern  Forest degradation  Functional traits  Facultative  Obligate  Plasticity  
Environmental influences on growth and reproductive maturation of a keystone forest tree: Implications for obligate seeder susceptibility to frequent fire 期刊论文
FOREST ECOLOGY AND MANAGEMENT, 2018, 411: 108-119
作者:  Dukai, Brenton von Takach;  Lindenmayer, David B.;  Banks, Sam C.
收藏  |  浏览/下载:16/0  |  提交时间:2019/04/09
Eucalyptus regnans  Fire regime  Fire return interval  Niche shift  Obligate seeder  Primary juvenile period  Serotiny  Vital rate