GSTDTAP

浏览/检索结果: 共18条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Temporal Variation and Frequency Dependence of Seismic Ambient Noise on Mars From Polarization Analysis 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (13)
作者:  Suemoto, Yudai;  Ikeda, Tatsunori;  Tsuji, Takeshi
收藏  |  浏览/下载:17/0  |  提交时间:2020/06/22
InSight  ambient noise  polarization analysis  autocorrelation function  wind  
Molecular architecture of thyroglobulin revealed 期刊论文
NATURE, 2020, 578 (7796) : 520-521
作者:  Botvinik-Nezer, Rotem;  Holzmeister, Felix;  Camerer, Colin F.;  Dreber, Anna;  Huber, Juergen;  Johannesson, Magnus;  Kirchler, Michael;  Iwanir, Roni;  Mumford, Jeanette A.;  Adcock, R. Alison;  Avesani, Paolo;  Baczkowski, Blazej M.;  Bajracharya, Aahana
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The structure of thyroglobulin, the enormous protein that acts as a precursor for thyroid hormones, has been determined, and its hormone-forming tyrosine amino-acid residues have been identified.


Fresh insight into the biosynthesis of thyroid hormones.


  
Structure of the ER membrane complex, a transmembrane-domain insertase 期刊论文
NATURE, 2020
作者:  Riemensberger, Johann;  Lukashchuk, Anton;  Karpov, Maxim;  Weng, Wenle;  Lucas, Erwan;  Liu, Junqiu;  Kippenberg, Tobias J.
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

The cryo-electron microscopy structure of the ER membrane complex provides insight into its overall architecture, evolution and function in co-translational protein insertion.


The endoplasmic reticulum (ER) membrane complex (EMC) cooperates with the Sec61 translocon to co-translationally insert a transmembrane helix (TMH) of many multi-pass integral membrane proteins into the ER membrane, and it is also responsible for inserting the TMH of some tail-anchored proteins(1-3). How EMC accomplishes this feat has been unclear. Here we report the first, to our knowledge, cryo-electron microscopy structure of the eukaryotic EMC. We found that the Saccharomyces cerevisiae EMC contains eight subunits (Emc1-6, Emc7 and Emc10), has a large lumenal region and a smaller cytosolic region, and has a transmembrane region formed by Emc4, Emc5 and Emc6 plus the transmembrane domains of Emc1 and Emc3. We identified a five-TMH fold centred around Emc3 that resembles the prokaryotic YidC insertase and that delineates a largely hydrophilic client protein pocket. The transmembrane domain of Emc4 tilts away from the main transmembrane region of EMC and is partially mobile. Mutational studies demonstrated that the flexibility of Emc4 and the hydrophilicity of the client pocket are required for EMC function. The EMC structure reveals notable evolutionary conservation with the prokaryotic insertases(4,5), suggests that eukaryotic TMH insertion involves a similar mechanism, and provides a framework for detailed understanding of membrane insertion for numerous eukaryotic integral membrane proteins and tail-anchored proteins.


  
Fourth defence molecule completes antiviral line-up 期刊论文
NATURE, 2020, 581 (7808) : 266-267
作者:  Marshall, Michael
收藏  |  浏览/下载:4/0  |  提交时间:2020/07/03

Toll-like receptors can initiate an immune response when they detect signs of a viral or microbial threat. New insight into how such receptor activation drives defence programs should aid our efforts to understand autoimmune diseases.


Key adaptor protein found in a pathway that drives interferon production.


  
Femtosecond-to-millisecond structural changes in a light-driven sodium pump 期刊论文
NATURE, 2020, 583 (7815) : 314-+
作者:  Moore, Luiza;  Leongamornlert, Daniel;  Coorens, Tim H. H.;  Sanders, Mathijs A.;  Ellis, Peter;  Dentro, Stefan C.;  Dawson, Kevin J.;  Butler, Tim;  Rahbari, Raheleh;  Mitchell, Thomas J.;  Maura, Francesco;  Nangalia, Jyoti;  Tarpey, Patrick S.;  Brunner, Simon F.;  Lee-Six, Henry;  Hooks, Yvette;  Moody, Sarah;  Mahbubani, Krishnaa T.;  Jimenez-Linan, Mercedes;  Brosens, Jan J.;  Iacobuzio-Donahue, Christine A.;  Martincorena, Inigo;  Saeb-Parsy, Kourosh;  Campbell, Peter J.;  Stratton, Michael R.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Light-driven sodium pumps actively transport small cations across cellular membranes(1). These pumps are used by microorganisms to convert light into membrane potential and have become useful optogenetic tools with applications in neuroscience. Although the resting state structures of the prototypical sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) have been solved(2,3), it is unclear how structural alterations overtime allow sodium to be translocated against a concentration gradient. Here, using the Swiss X-ray Free Electron Laser(4), we have collected serial crystallographic data at ten pump-probe delays from femtoseconds to milliseconds. High-resolution structural snapshots throughout the KR2 photocycle show how retinal isomerization is completed on the femtosecond timescale and changes the local structure of the binding pocket in the early nanoseconds. Subsequent rearrangements and deprotonation of the retinal Schiff base open an electrostatic gate in microseconds. Structural and spectroscopic data, in combination with quantum chemical calculations, indicate that a sodium ion bind stransiently close to the retinal within one millisecond. In the last structural intermediate, at 20 milliseconds after activation, we identified a potential second sodium-binding site close to the extracellular exit. These results provide direct molecular insight into the dynamics of active cation transport across biological membranes.


  
Structure and mechanism of human diacylglycerol O-acyltransferase 1 期刊论文
NATURE, 2020, 581 (7808) : 329-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The structure of human diacylglycerol O-acyltransferase 1, a membrane protein that synthesizes triacylglycerides, is solved with cryo-electron microscopy, providing insight into its function and mechanism of enzymatic activity.


Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans(1). DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins(2,3). How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


  
Structural basis for catalysis and substrate specificity of human ACAT1 期刊论文
NATURE, 2020, 581 (7808) : 333-+
作者:  Jiao, Huipeng;  Wachsmuth, Laurens;  Kumari, Snehlata;  Schwarzer, Robin;  Lin, Juan;  Eren, Remzi Onur;  Fisher, Amanda;  Lane, Rebecca;  Young, George R.;  Kassiotis, George;  Kaiser, William J.;  Pasparakis, Manolis
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

The structure of human ACAT1, which catalyses the transfer of an acyl group from acyl-coenzyme A to cholesterol to form cholesteryl ester, is resolved by cryo-electron microscopy.


As members of the membrane-bound O-acyltransferase (MBOAT) enzyme family, acyl-coenzyme A:cholesterol acyltransferases (ACATs) catalyse the transfer of an acyl group from acyl-coenzyme A to cholesterol to generate cholesteryl ester, the primary form in which cholesterol is stored in cells and transported in plasma(1). ACATs have gained attention as potential drug targets for the treatment of diseases such as atherosclerosis, Alzheimer'  s disease and cancer(2-7). Here we present the cryo-electron microscopy structure of human ACAT1 as a dimer of dimers. Each protomer consists of nine transmembrane segments, which enclose a cytosolic tunnel and a transmembrane tunnel that converge at the predicted catalytic site. Evidence from structure-guided mutational analyses suggests that acyl-coenzyme A enters the active site through the cytosolic tunnel, whereas cholesterol may enter from the side through the transmembrane tunnel. This structural and biochemical characterization helps to rationalize the preference of ACAT1 for unsaturated acyl chains, and provides insight into the catalytic mechanism of enzymes within the MBOAT family(8).


  
Gut microbes tune inflammation and lifespan in a mouse model of amyotrophic lateral sclerosis 期刊论文
NATURE, 2020, 582 (7810) : 34-35
作者:  Mega, Emiliano Rodriguez
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The microbiota modulates amyotrophic lateral sclerosis in an animal model.


There is growing evidence that gut microbes can influence disease. Analysis of a mouse model of the neurodegenerative condition amyotrophic lateral sclerosis offers insight into how gut bacteria might contribute to this illness.


  
Action of a minimal contractile bactericidal nanomachine 期刊论文
NATURE, 2020, 580 (7805) : 658-+
作者:  Peng, Ruchao;  Xu, Xin;  Jing, Jiamei;  Wang, Min;  Peng, Qi;  Liu, Sheng;  Wu, Ying;  Bao, Xichen;  Wang, Peiyi;  Qi, Jianxun;  Gao, George F.;  Shi, Yi
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

The authors report near-atomic resolution structures of the R-type bacteriocin from Pseudomonas aeruginosa in the pre-contraction and post-contraction states, and these structures provide insight into the mechanism of action of molecular syringes.


R-type bacteriocins are minimal contractile nanomachines that hold promise as precision antibiotics(1-4). Each bactericidal complex uses a collar to bridge a hollow tube with a contractile sheath loaded in a metastable state by a baseplate scaffold(1,2). Fine-tuning of such nucleic acid-free protein machines for precision medicine calls for an atomic description of the entire complex and contraction mechanism, which is not available from baseplate structures of the (DNA-containing) T4 bacteriophage(5). Here we report the atomic model of the complete R2 pyocin in its pre-contraction and post-contraction states, each containing 384 subunits of 11 unique atomic models of 10 gene products. Comparison of these structures suggests the following sequence of events during pyocin contraction: tail fibres trigger lateral dissociation of baseplate triplexes  the dissociation then initiates a cascade of events leading to sheath contraction  and this contraction converts chemical energy into mechanical force to drive the iron-tipped tube across the bacterial cell surface, killing the bacterium.


  
U1 snRNP regulates chromatin retention of noncoding RNAs 期刊论文
NATURE, 2020
作者:  Dehollain, J. P.;  Mukhopadhyay, U.;  Michal, V. P.;  Wang, Y.;  Wunsch, B.;  Reichl, C.;  Wegscheider, W.;  Rudner, M. S.;  Demler, E.;  Vandersypen, L. M. K.
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Long noncoding RNAs (lncRNAs) and promoter- or enhancer-associated unstable transcripts locate preferentially to chromatin, where some regulate chromatin structure, transcription and RNA processing(1-13). Although several RNA sequences responsible for nuclear localization have been identified-such as repeats in the lncRNA Xist and Alu-like elements in long RNAs14-16-how lncRNAs as a class are enriched at chromatin remains unknown. Here we describe a random, mutagenesis-coupled, high-throughput method that we name '  RNA elements for subcellular localization by sequencing'  (mutREL-seq). Using this method, we discovered an RNA motif that recognizes the U1 small nuclear ribonucleoprotein (snRNP) and is essential for the localization of reporter RNAs to chromatin. Across the genome, chromatin-bound lncRNAs are enriched with 5 '  splice sites and depleted of 3 '  splice sites, and exhibit high levels of U1 snRNA binding compared with cytoplasm-localized messenger RNAs. Acute depletion of U1 snRNA or of the U1 snRNP protein component SNRNP70 markedly reduces the chromatin association of hundreds of lncRNAs and unstable transcripts, without altering the overall transcription rate in cells. In addition, rapid degradation of SNRNP70 reduces the localization of both nascent and polyadenylated lncRNA transcripts to chromatin, and disrupts the nuclear and genome-wide localization of the lncRNA Malat1. Moreover, U1 snRNP interacts with transcriptionally engaged RNA polymerase II. These results show that U1 snRNP acts widely to tether and mobilize lncRNAs to chromatin in a transcription-dependent manner. Our findings have uncovered a previously unknown role of U1 snRNP beyond the processing of precursor mRNA, and provide molecular insight into how lncRNAs are recruited to regulatory sites to carry out chromatin-associated functions.


Long noncoding RNAs and certain unstable transcripts tend to localize to chromatin, in a process that is shown here to depend on an RNA motif that recognizes the small nuclear ribonuclear protein U1, and to rely on transcription.