GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

已选(0)清除 条数/页:   排序方式:
ECMWF与Atos成立天气和气候模拟卓越中心 快报文章
气候变化快报,2020年第20期
作者:  刘燕飞
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:378/0  |  提交时间:2020/10/20
Weather & Climate Modelling  High-performance Computing  ECMWF  Artificial Intelligence  
Fully hardware-implemented memristor convolutional neural network 期刊论文
NATURE, 2020, 577 (7792) : 641-+
作者:  Yoshioka-Kobayashi, Kumiko;  Matsumiya, Marina;  Niino, Yusuke;  Isomura, Akihiro;  Kori, Hiroshi;  Miyawaki, Atsushi;  Kageyama, Ryoichiro
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks(1-4). However, convolutional neural networks (CNNs)-one of the most important models for image recognition(5)-have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices(6-9). Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing.


  
High performance computing for energy system optimization models: Enhancing the energy policy tool kit 期刊论文
ENERGY POLICY, 2019, 128: 66-74
作者:  Sharma, Tarun;  Glynn, James;  Panos, Evangelos;  Deane, Paul;  Gargiulo, Maurizio;  Rogan, Fionn;  Gallachoir, Brian O.
收藏  |  浏览/下载:4/0  |  提交时间:2019/11/26
Energy system optimization models  High performance computing  Solution strategies  
Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM) 科技报告
来源:US Department of Energy (DOE). 出版年: 2015
作者:  Zeng, Xubin;  Troch, Peter;  Pelletier, Jon;  Niu, Guo-Yue;  Gochis, David
收藏  |  浏览/下载:7/0  |  提交时间:2019/04/05
hydrological modeling  earth system modeling  global land surface datasets  high-performance computing  
Biological and Environmental Research Network Requirements 科技报告
来源:US Department of Energy (DOE). 出版年: 2013
作者:  Balaji, V. [Princeton Univ., NJ (United States). Earth Science Grid Federation (ESGF)];  Boden, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)];  Cowley, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)];  Dart,
收藏  |  浏览/下载:11/0  |  提交时间:2019/04/05
Network requirements  high-performance networks  high-performance computing  data-intensive science  ESnet  climate science  CMIP5  KBase  Globus Online  
Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration 科技报告
来源:US Department of Energy (DOE). 出版年: 2012
作者:  Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)];  Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)];  Flach, G. [Savannah River National Lab. (SRNL), Aiken, SC (United States)];  Freedman, V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)];  Agarwal, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)];  Andre, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)];  Bott, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)];  Chen, X. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)];  Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)];  Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)];  Gorton, I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)];  Murray, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)];  Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)];  Meyer, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)];  Rockhold, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)];  Shoshani, A. [LBNL];  Steefel, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)];  Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)];  Waichler, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)]
收藏  |  浏览/下载:6/0  |  提交时间:2019/04/05
Office of Environmental Management  ASCEM  Advanced Modeling  High Performance Computing  Hanford  Vadose Zone  Akuna  Amanzi  Savannah River  F-Area