GSTDTAP

浏览/检索结果: 共83条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
新研究评估地球系统模型分辨率对模拟结果的潜在影响 快报文章
地球科学快报,2024年第10期
作者:  刘文浩
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:568/0  |  提交时间:2024/05/25
E3SM  resolution  
联合国机构发布《2024年全球电子垃圾监测》报告 快报文章
资源环境快报,2024年第7期
作者:  廖 琴
Microsoft Word(25Kb)  |  收藏  |  浏览/下载:556/0  |  提交时间:2024/04/16
E-Waste  Waste Electrical and Electronic Equipment  
DOE投资7000万美元改进地球气候系统超级计算机模型 快报文章
地球科学快报,2022年第17期
作者:  刘文浩
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:419/0  |  提交时间:2022/09/09
DOE  E3SM  Supercomputer Model  
LLNL最新版地球系统模型计算速度显著提升 快报文章
地球科学快报,2021年第21期
作者:  刘文浩
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:731/0  |  提交时间:2021/11/10
DOE  LLNL  E3SM  
氢基电燃料减缓气候变化的潜力和风险 快报文章
气候变化快报,2021年第10期
作者:  刘燕飞
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:433/0  |  提交时间:2021/05/20
E-fuels  hydrogen  Climate mitigation effectiveness  Energy conversion efficiency  Climate economics  
Evaluation of an Improved Convective Triggering Function: Observational Evidence and SCM Tests 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (11)
作者:  Wang, Yi-Chi;  Xie, Shaocheng;  Tang, Shuaiqi;  Lin, Wuyin
收藏  |  浏览/下载:10/0  |  提交时间:2020/08/18
convection trigger  convection  diurnal cycle of precipitation  E3SM  precipitation  single-column model  
The Effects of Viewing Geometry on the Spectral Analysis of Lunar Regolith as Inferred by in situ Spectrophotometric Measurements of Chang'E-4 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (8)
作者:  Yang, Yazhou;  Lin, Honglei;  Liu, Yang;  Lin, Yangting;  Wei, Yong;  Hu, Sen;  Yang, Wei;  Xu, Rui;  He, Zhiping;  Zou, Yongliao
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
lunar regolith  Chang'  E-4  in situ spectrophotometric measurement  viewing geometry  spectral features  visible and near-infrared  
The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K 期刊论文
NATURE, 2020
作者:  Chen, Guorui;  Sharpe, Aaron L.;  Fox, Eli J.;  Zhang, Ya-Hui;  Wang, Shaoxin;  Jiang, Lili;  Lyu, Bosai;  Li, Hongyuan;  Watanabe, Kenji;  Taniguchi, Takashi;  Shi, Zhiwen;  Senthil, T.;  Goldhaber-Gordon, David;  Zhang, Yuanbo;  Wang, Feng
收藏  |  浏览/下载:44/0  |  提交时间:2020/07/03

The cyclin-dependent kinase inhibitor CR8 acts as a molecular glue compound by inducing the formation of a complex between CDK12-cyclin K and DDB1, which results in the ubiquitination and degradation of cyclin K.


Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation(1). Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets(2). They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines(3-5), we identify CR8-a cyclin-dependent kinase (CDK) inhibitor(6)-as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12-cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues.


  
APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline 期刊论文
NATURE, 2020, 581 (7806) : 70-+
作者:  Doherty, Tiarnan A. S.;  Winchester, Andrew J.;  Macpherson, Stuart;  Johnstone, Duncan N.;  Pareek, Vivek;  Tennyson, Elizabeth M.;  Kosar, Sofiia;  Kosasih, Felix U.;  Anaya, Miguel;  Abdi-Jalebi, Mojtaba;  Andaji-Garmaroudi, Zahra;  Wong, E. Laine;  Madeo, Julien;  Chiang, Yu-Hsien;  Park, Ji-Sang;  Jung, Young-Kwang;  Petoukhoff, Christopher E.;  Divitini, Giorgio;  Man, Michael K. L.;  Ducati, Caterina;  Walsh, Aron;  Midgley, Paul A.;  Dani, Keshav M.;  Stranks, Samuel D.
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

Breakdown of the blood-brain barrier in individuals carrying the epsilon 4 allele of the APOE gene, but not the epsilon 3 allele, increases with and predicts cognitive impairment and is independent of amyloid beta or tau pathology.


Vascular contributions to dementia and Alzheimer'  s disease are increasingly recognized(1-6). Recent studies have suggested that breakdown of the blood-brain barrier (BBB) is an early biomarker of human cognitive dysfunction(7), including the early clinical stages of Alzheimer'  s disease(5,8-10). The E4 variant of apolipoprotein E (APOE4), the main susceptibility gene for Alzheimer'  s disease(11-14), leads to accelerated breakdown of the BBB and degeneration of brain capillary pericytes(15-19), which maintain BBB integrity(20-22). It is unclear, however, whether the cerebrovascular effects of APOE4 contribute to cognitive impairment. Here we show that individuals bearing APOE4 (with the epsilon 3/epsilon 4 or epsilon 4/epsilon 4 alleles) are distinguished from those without APOE4 (epsilon 3/epsilon 3) by breakdown of the BBB in the hippocampus and medial temporal lobe. This finding is apparent in cognitively unimpaired APOE4 carriers and more severe in those with cognitive impairment, but is not related to amyloid-beta or tau pathology measured in cerebrospinal fluid or by positron emission tomography(23). High baseline levels of the BBB pericyte injury biomarker soluble PDGFR beta(7,8) in the cerebrospinal fluid predicted future cognitive decline in APOE4 carriers but not in non-carriers, even after controlling for amyloid-beta and tau status, and were correlated with increased activity of the BBB-degrading cyclophilin A-matrix metalloproteinase-9 pathway(19) in cerebrospinal fluid. Our findings suggest that breakdown of the BBB contributes to APOE4-associated cognitive decline independently of Alzheimer'  s disease pathology, and might be a therapeutic target in APOE4 carriers.


  
CRISPR screen in regulatory T cells reveals modulators of Foxp3 期刊论文
NATURE, 2020
作者:  Xu, Daqian;  Wang, Zheng;  Xia, Yan;  Shao, Fei;  Xia, Weiya;  Wei, Yongkun;  Li, Xinjian;  Qian, Xu;  Lee, Jong-Ho;  Du, Linyong;  Zheng, Yanhua;  Lv, Guishuai;  Leu, Jia-shiun;  Wang, Hongyang;  Xing, Dongming;  Liang, Tingbo;  Hung, Mien-Chie;  Lu, Zhimin
收藏  |  浏览/下载:34/0  |  提交时间:2020/07/03

Regulatory T (T-reg) cells are required to control immune responses and maintain homeostasis, but are a significant barrier to antitumour immunity(1). Conversely, T-reg instability, characterized by loss of the master transcription factor Foxp3 and acquisition of proinflammatory properties(2), can promote autoimmunity and/or facilitate more effective tumour immunity(3,4). A comprehensive understanding of the pathways that regulate Foxp3 could lead to more effective T-reg therapies for autoimmune disease and cancer. The availability of new functional genetic tools has enabled the possibility of systematic dissection of the gene regulatory programs that modulate Foxp3 expression. Here we developed a CRISPR-based pooled screening platform for phenotypes in primary mouse T-reg cells and applied this technology to perform a targeted loss-of-function screen of around 500 nuclear factors to identify gene regulatory programs that promote or disrupt Foxp3 expression. We identified several modulators of Foxp3 expression, including ubiquitin-specific peptidase 22 (Usp22) and ring finger protein 20 (Rnf20). Usp22, a member of the deubiquitination module of the SAGA chromatin-modifying complex, was revealed to be a positive regulator that stabilized Foxp3 expression  whereas the screen suggested that Rnf20, an E3 ubiquitin ligase, can serve as a negative regulator of Foxp3. T-reg-specific ablation of Usp22 in mice reduced Foxp3 protein levels and caused defects in their suppressive function that led to spontaneous autoimmunity but protected against tumour growth in multiple cancer models. Foxp3 destabilization in Usp22-deficient T-reg cells could be rescued by ablation of Rnf20, revealing a reciprocal ubiquitin switch in T-reg cells. These results reveal previously unknown modulators of Foxp3 and demonstrate a screening method that can be broadly applied to discover new targets for T-reg immunotherapies for cancer and autoimmune disease.


A CRISPR-based screening platform was used to identify previously uncharacterized genes that regulate the regulatory T cell-specific master transcription factor Foxp3, indicating that this screening method may be broadly applicable for the discovery of other genes involved in autoimmunity and immune responses to cancer.