GSTDTAP

浏览/检索结果: 共82条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
国际研究比较分析2050年全球建筑脱碳方案 快报文章
气候变化快报,2022年第12期
作者:  刘莉娜
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:698/0  |  提交时间:2022/06/20
Building  Decarbonization Scenarios  Global Comparison  
Atlantic-Pacific Gradients Drive Last Millennium Hydroclimate Variability in Mesoamerica 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (13)
作者:  Bhattacharya, Tripti;  Coats, Sloan
收藏  |  浏览/下载:10/0  |  提交时间:2020/06/16
Central America  hydroclimate  paleoclimate  tropical variability  last millennium  proxy-model comparison  
High Production of Soluble Iron Promoted by Aerosol Acidification in Fog 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Shi, Jinhui;  Guan, Yang;  Ito, Akinori;  Gao, Huiwang;  Yao, Xiaohong;  Baker, Alex R.;  Zhang, Daizhou
收藏  |  浏览/下载:9/0  |  提交时间:2020/06/16
aerosol acidification  dust  fog  haze  iron solubility  observation model comparison  
Millennial-scale hydroclimate control of tropical soil carbon storage 期刊论文
NATURE, 2020, 581 (7806) : 63-+
作者:  Lam, Tommy Tsan-Yuk;  Jia, Na;  Zhang, Ya-Wei;  Shum, Marcus Ho-Hin;  Jiang, Jia-Fu;  Zhu, Hua-Chen;  Tong, Yi-Gang;  Shi, Yong-Xia;  Ni, Xue-Bing;  Liao, Yun-Shi;  Li, Wen-Juan;  Jiang, Bao-Gui;  Wei, Wei;  Yuan, Ting-Ting;  Zheng, Kui;  Cui, Xiao-Ming;  Li, Jie;  Pei, Guang-Qian
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Over the past 18,000 years, the residence time and amount of soil carbon stored in the Ganges-Brahmaputra basin have been controlled by the intensity of Indian Summer Monsoon rainfall, with greater carbon destabilization during wetter, warmer conditions.


The storage of organic carbon in the terrestrial biosphere directly affects atmospheric concentrations of carbon dioxide over a wide range of timescales. Within the terrestrial biosphere, the magnitude of carbon storage can vary in response to environmental perturbations such as changing temperature or hydroclimate(1), potentially generating feedback on the atmospheric inventory of carbon dioxide. Although temperature controls the storage of soil organic carbon at mid and high latitudes(2,3), hydroclimate may be the dominant driver of soil carbon persistence in the tropics(4,5)  however, the sensitivity of tropical soil carbon turnover to large-scale hydroclimate variability remains poorly understood. Here we show that changes in Indian Summer Monsoon rainfall have controlled the residence time of soil carbon in the Ganges-Brahmaputra basin over the past 18,000 years. Comparison of radiocarbon ages of bulk organic carbon and terrestrial higher-plant biomarkers with co-located palaeohydrological records(6) reveals a negative relationship between monsoon rainfall and soil organic carbon stocks on a millennial timescale. Across the deglaciation period, a depletion of basin-wide soil carbon stocks was triggered by increasing rainfall and associated enhanced soil respiration rates. Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilization, further increasing atmospheric carbon dioxide concentrations.


  
Hair-bearing human skin generated entirely from pluripotent stem cells 期刊论文
NATURE, 2020
作者:  von Appen, Alexander;  LaJoie, Dollie;  Johnson, Isabel E.;  Trnka, Michael J.;  Pick, Sarah M.;  Burlingame, Alma L.;  Ullman, Katharine S.;  Frost, Adam
收藏  |  浏览/下载:52/0  |  提交时间:2020/07/03

Skin organoids generated in vitro from human pluripotent stem cells form complex, multilayered skin tissue with hair follicles, sebaceous glands and neural circuitry, and integrate with endogenous skin when grafted onto immunocompromised mice.


The skin is a multilayered organ, equipped with appendages (that is, follicles and glands), that is critical for regulating body temperature and the retention of bodily fluids, guarding against external stresses and mediating the sensation of touch and pain(1,2). Reconstructing appendage-bearing skin in cultures and in bioengineered grafts is a biomedical challenge that has yet to be met(3-9). Here we report an organoid culture system that generates complex skin from human pluripotent stem cells. We use stepwise modulation of the transforming growth factor beta (TGF beta) and fibroblast growth factor (FGF) signalling pathways to co-induce cranial epithelial cells and neural crest cells within a spherical cell aggregate. During an incubation period of 4-5 months, we observe the emergence of a cyst-like skin organoid composed of stratified epidermis, fat-rich dermis and pigmented hair follicles that are equipped with sebaceous glands. A network of sensory neurons and Schwann cells form nerve-like bundles that target Merkel cells in organoid hair follicles, mimicking the neural circuitry associated with human touch. Single-cell RNA sequencing and direct comparison to fetal specimens suggest that the skin organoids are equivalent to the facial skin of human fetuses in the second trimester of development. Moreover, we show that skin organoids form planar hair-bearing skin when grafted onto nude mice. Together, our results demonstrate that nearly complete skin can self-assemble in vitro and be used to reconstitute skin in vivo. We anticipate that our skin organoids will provide a foundation for future studies of human skin development, disease modelling and reconstructive surgery.


  
Resolving the Differences in the Simulated and Reconstructed Temperature Response to Volcanism 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (8)
作者:  Zhu, Feng;  Emile-Geay, Julien;  Hakim, Gregory J.;  King, Jonathan;  Anchukaitis, Kevin J.
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/02
volcanic eruptions  temperature response  simulation-reconstruction comparison  Last Millennium Reanalysis  paleoclimate data assimilation  Superposed Epoch Analysis  
Structural transitions in influenza haemagglutinin at membrane fusion pH 期刊论文
NATURE, 2020, 583 (7814) : 150-+
作者:  Wei, Kevin;  Korsunsky, Ilya;  Marshall, Jennifer L.;  Gao, Anqi;  Watts, Gerald F. M.;  Major, Triin;  Croft, Adam P.;  Watts, Jordan;  Blazar, Philip E.;  Lange, Jeffrey K.;  Thornhill, Thomas S.;  Filer, Andrew;  Raza, Karim;  Donlin, Laura T.;  Siebel, Christian W.
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Cryo-electron microscopy studies of the influenza haemagglutinin glycoprotein at the low pH of host endosomes reveals structural intermediates, offering a dynamic view of how the protein mediates membrane fusion.


Infection by enveloped viruses involves fusion of their lipid envelopes with cellular membranes to release the viral genome into cells. For HIV, Ebola, influenza and numerous other viruses, envelope glycoproteins bind the infecting virion to cell-surface receptors and mediate membrane fusion. In the case of influenza, the receptor-binding glycoprotein is the haemagglutinin (HA), and following receptor-mediated uptake of the bound virus by endocytosis(1), it is the HA that mediates fusion of the virus envelope with the membrane of the endosome(2). Each subunit of the trimeric HA consists of two disulfide-linked polypeptides, HA1 and HA2. The larger, virus-membrane-distal, HA1 mediates receptor binding  the smaller, membrane-proximal, HA2 anchors HA in the envelope and contains the fusion peptide, a region that is directly involved in membrane interaction(3). The low pH of endosomes activates fusion by facilitating irreversible conformational changes in the glycoprotein. The structures of the initial HA at neutral pH and the final HA at fusion pH have been investigated by electron microscopy(4,5) and X-ray crystallography(6-8). Here, to further study the process of fusion, we incubate HA for different times at pH 5.0 and directly image structural changes using single-particle cryo-electron microscopy. We describe three distinct, previously undescribed forms of HA, most notably a 150 angstrom-long triple-helical coil of HA2, which may bridge between the viral and endosomal membranes. Comparison of these structures reveals concerted conformational rearrangements through which the HA mediates membrane fusion.


  
Iron-based binary ferromagnets for transverse thermoelectric conversion 期刊论文
NATURE, 2020, 581 (7806) : 53-+
作者:  Grun, Rainer;  Pike, Alistair;  McDermott, Frank;  Eggins, Stephen;  Mortimer, Graham;  Aubert, Maxime;  Kinsley, Lesley;  Joannes-Boyau, Renaud;  Rumsey, Michael;  Denys, Christiane;  Brink, James;  Clark, Tara;  Stringer, Chris
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Aluminium- and gallium-doped iron compounds show a large anomalous Nernst effect owing to a topological electronic structure, and their films are potentially suitable for designing low-cost, flexible microelectronic thermoelectric generators.


Thermoelectric generation using the anomalous Nernst effect (ANE) has great potential for application in energy harvesting technology because the transverse geometry of the Nernst effect should enable efficient, large-area and flexible coverage of a heat source. For such applications to be viable, substantial improvements will be necessary not only for their performance but also for the associated material costs, safety and stability. In terms of the electronic structure, the anomalous Nernst effect (ANE) originates from the Berry curvature of the conduction electrons near the Fermi energy(1,2). To design a large Berry curvature, several approaches have been considered using nodal points and lines in momentum space(3-10). Here we perform a high-throughput computational search and find that 25 percent doping of aluminium and gallium in alpha iron, a naturally abundant and low-cost element, dramatically enhances the ANE by a factor of more than ten, reaching about 4 and 6 microvolts per kelvin at room temperature, respectively, close to the highest value reported so far. The comparison between experiment and theory indicates that the Fermi energy tuning to the nodal web-a flat band structure made of interconnected nodal lines-is the key for the strong enhancement in the transverse thermoelectric coefficient, reaching a value of about 5 amperes per kelvin per metre with a logarithmic temperature dependence. We have also succeeded in fabricating thin films that exhibit a large ANE at zero field, which could be suitable for designing low-cost, flexible microelectronic thermoelectric generators(11-13).


  
Accurate compound-specific C-14 dating of archaeological pottery vessels 期刊论文
NATURE, 2020, 580 (7804) : 506-+
作者:  Yin, Yafei;  Lu, J. Yuyang;  Zhang, Xuechun;  Shao, Wen;  Xu, Yanhui;  Li, Pan;  Hong, Yantao;  Cui, Li;  Shan, Ge;  Tian, Bin;  Zhang, Qiangfeng Cliff;  Shen, Xiaohua
收藏  |  浏览/下载:20/0  |  提交时间:2020/05/13

Pottery is one of the most commonly recovered artefacts from archaeological sites. Despite more than a century of relative dating based on typology and seriation(1), accurate dating of pottery using the radiocarbon dating method has proven extremely challenging owing to the limited survival of organic temper and unreliability of visible residues(2-4). Here we report a method to directly date archaeological pottery based on accelerator mass spectrometry analysis of C-14 in absorbed food residues using palmitic (C-16:0) and stearic (C-18:0) fatty acids purified by preparative gas chromatography(5-8). We present accurate compound-specific radiocarbon determinations of lipids extracted from pottery vessels, which were rigorously evaluated by comparison with dendrochronological dates(9,10) and inclusion in site and regional chronologies that contained previously determined radiocarbon dates on other materials(11-15). Notably, the compound-specific dates from each of the C-16:0 and C-18:0 fatty acids in pottery vessels provide an internal quality control of the results(6) and are entirely compatible with dates for other commonly dated materials. Accurate radiocarbon dating of pottery vessels can reveal: (1) the period of use of pottery  (2) the antiquity of organic residues, including when specific foodstuffs were exploited  (3) the chronology of sites in the absence of traditionally datable materials  and (4) direct verification of pottery typochronologies. Here we used the method to date the exploitation of dairy and carcass products in Neolithic vessels from Britain, Anatolia, central and western Europe, and Saharan Africa.


Using lipid residues absorbed in potsherds, the ages of pottery from various archaeological sites are determined and validated using sites for which the dates are well known from other methods.


  
Feedback generates a second receptive field in neurons of the visual cortex 期刊论文
NATURE, 2020
作者:  Shi, Enzheng;  Yuan, Biao;  Shiring, Stephen B.;  Gao, Yao;  Akriti;  Guo, Yunfan;  Su, Cong;  Lai, Minliang;  Yang, Peidong;  Kong, Jing;  Savoie, Brett M.;  Yu, Yi;  Dou, Letian
收藏  |  浏览/下载:45/0  |  提交时间:2020/07/03

Animals sense the environment through pathways that link sensory organs to the brain. In the visual system, these feedforward pathways define the classical feedforward receptive field (ffRF), the area in space in which visual stimuli excite a neuron(1). The visual system also uses visual context-the visual scene surrounding a stimulus-to predict the content of the stimulus(2), and accordingly, neurons have been identified that are excited by stimuli outside their ffRF(3-8). However, the mechanisms that generate excitation to stimuli outside the ffRF are unclear. Here we show that feedback projections onto excitatory neurons in the mouse primary visual cortex generate a second receptive field that is driven by stimuli outside the ffRF. The stimulation of this feedback receptive field (fbRF) elicits responses that are slower and are delayed in comparison with those resulting from the stimulation of the ffRF. These responses are preferentially reduced by anaesthesia and by silencing higher visual areas. Feedback inputs from higher visual areas have scattered receptive fields relative to their putative targets in the primary visual cortex, which enables the generation of the fbRF. Neurons with fbRFs are located in cortical layers that receive strong feedback projections and are absent in the main input layer, which is consistent with a laminar processing hierarchy. The observation that large, uniform stimuli-which cover both the fbRF and the ffRF-suppress these responses indicates that the fbRF and the ffRF are mutually antagonistic. Whereas somatostatin-expressing inhibitory neurons are driven by these large stimuli, inhibitory neurons that express parvalbumin and vasoactive intestinal peptide have mutually antagonistic fbRF and ffRF, similar to excitatory neurons. Feedback projections may therefore enable neurons to use context to estimate information that is missing from the ffRF and to report differences in stimulus features across visual space, regardless of whether excitation occurs inside or outside the ffRF. By complementing the ffRF, the fbRF that we identify here could contribute to predictive processing.


Feedback projections onto neurons of the mouse primary visual cortex generate a second excitatory receptive field that is driven by stimuli outside of the classical feedforward receptive field, with responses mediated by higher visual areas.