GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Science载文为植物高效固碳和作物增产提供突破性策略 快报文章
气候变化快报,2025年第19期
作者:  董利苹 杜海霞
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:226/0  |  提交时间:2025/09/30
CO2 Fixation  Lipid Synthesis  Arabidopsis Thaliana  
Electromechanical coupling in the hyperpolarization-activated K+ channel KAT1 期刊论文
NATURE, 2020, 583 (7814) : 145-+
作者:  Jin, Zhenming;  Du, Xiaoyu;  Xu, Yechun;  Deng, Yongqiang;  Liu, Meiqin;  Zhao, Yao;  Zhang, Bing;  Li, Xiaofeng;  Zhang, Leike;  Peng, Chao;  Duan, Yinkai;  Yu, Jing;  Wang, Lin;  Yang, Kailin;  Liu, Fengjiang;  Jiang, Rendi;  Yang, Xinglou;  You, Tian;  Liu, Xiaoce
收藏  |  浏览/下载:69/0  |  提交时间:2020/07/03

Voltage-gated potassium (K-v) channels coordinate electrical signalling and control cell volume by gating in response to membrane depolarization or hyperpolarization. However, although voltage-sensing domains transduce transmembrane electric field changes by a common mechanism involving the outward or inward translocation of gating charges(1-3), the general determinants of channel gating polarity remain poorly understood(4). Here we suggest a molecular mechanism for electromechanical coupling and gating polarity in non-domain-swapped K-v channels on the basis of the cryo-electron microscopy structure of KAT1, the hyperpolarization-activated K-v channel from Arabidopsis thaliana. KAT1 displays a depolarized voltage sensor, which interacts with a closed pore domain directly via two interfaces and indirectly via an intercalated phospholipid. Functional evaluation of KAT1 structure-guided mutants at the sensor-pore interfaces suggests a mechanism in which direct interaction between the sensor and the C-linker hairpin in the adjacent pore subunit is the primary determinant of gating polarity. We suggest that an inward motion of the S4 sensor helix of approximately 5-7 angstrom can underlie a direct-coupling mechanism, driving a conformational reorientation of the C-linker and ultimately opening the activation gate formed by the S6 intracellular bundle. This direct-coupling mechanism contrasts with allosteric mechanisms proposed for hyperpolarization-activated cyclic nucleotide-gated channels(5), and may represent an unexpected link between depolarization- and hyperpolarization-activated channels.


The cryo-electron microscopy structure of the hyperpolarization-activated K+ channel KAT1 points to a direct-coupling mechanism between S4 movement and the reorientation of the C-linker.


  
A plant genetic network for preventing dysbiosis in the phyllosphere 期刊论文
NATURE, 2020, 580 (7805) : 653-+
作者:  van den Brink, Susanne C.;  Alemany, Anna;  van Batenburg, Vincent;  Moris, Naomi;  Blotenburg, Marloes;  Vivie, Judith;  Baillie-Johnson, Peter;  Nichols, Jennifer;  Sonnen, Katharina F.;  Martinez Arias, Alfonso;  van Oudenaarden, Alexander
收藏  |  浏览/下载:90/0  |  提交时间:2020/07/03

Mutations in genes involved in immune signalling and vesicle trafficking cause defects in the leaf microbiome of Arabidopsis thaliana that result in damage to leaf tissues, suggesting mechanisms by which terrestrial plants control the level and diversity of endophytic phyllosphere microbiota.


The aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1  hereafter, mfec)(1), simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1(S205F) mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment.


  
Mass-spectrometry-based draft of the Arabidopsis proteome 期刊论文
NATURE, 2020
作者:  Vasanthakumar, Ajithkumar;  Chisanga, David;  Blume, Jonas;  Gloury, Renee;  Britt, Kara;  Henstridge, Darren C.;  Zhan, Yifan;  Torres, Santiago Valle;  Liene, Sebastian;  Collins, Nicholas;  Cao, Enyuan;  Sidwell, Tom;  Li, Chaoran;  Spallanzani, Raul German;  Liao, Yang;  Beavis, Paul A.;  Gebhardt, Thomas;  Trevaskis, Natalie;  Nutt, Stephen L.;  Zajac, Jeffrey D.;  Davey, Rachel A.;  Febbraio, Mark A.;  Mathis, Diane;  Shi, Wei;  Kallies, Axel
收藏  |  浏览/下载:81/0  |  提交时间:2020/07/03

Plants are essential for life and are extremely diverse organisms with unique molecular capabilities(1). Here we present a quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana. Our analysis provides initial answers to how many genes exist as proteins (more than 18,000), where they are expressed, in which approximate quantities (a dynamic range of more than six orders of magnitude) and to what extent they are phosphorylated (over 43,000 sites). We present examples of how the data may be used, such as to discover proteins that are translated from short open-reading frames, to uncover sequence motifs that are involved in the regulation of protein production, and to identify tissue-specific protein complexes or phosphorylation-mediated signalling events. Interactive access to this resource for the plant community is provided by the ProteomicsDB and ATHENA databases, which include powerful bioinformatics tools to explore and characterize Arabidopsis proteins, their modifications and interactions.


A quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana provides a valuable resource for plant research.