GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Temporal characteristics of greenhouse gases (CO2 and CH4) in the megacity Shanghai, China: Association with air pollutants and meteorological conditions 期刊论文
ATMOSPHERIC RESEARCH, 2020, 235
作者:  Wei, Chong;  Wang, Maohua;  Fu, Qingyan;  Dai, Cheng;  Huang, Rong;  Bao, Quan
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/02
GHGs  Temporal variations  Anthropogenic sources  Meteorological conditions  Sea breeze  
Preindustrial (CH4)-C-14 indicates greater anthropogenic fossil CH4 emissions 期刊论文
NATURE, 2020, 578 (7795) : 409-+
作者:  Keener, Megan;  Hunt, Camden;  Carroll, Timothy G.;  Kampel, Vladimir;  Dobrovetsky, Roman;  Hayton, Trevor W.;  Menard, Gabriel
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era(1). Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate(2,3). Carbon-14 in CH4 ((CH4)-C-14) can be used to distinguish between fossil (C-14-free) CH4 emissions and contemporaneous biogenic sources  however, poorly constrained direct (CH4)-C-14 emissions from nuclear reactors have complicated this approach since the middle of the 20th century(4,5). Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)(2,3) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate  emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year(6,7). Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago(8), but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core (CH4)-C-14 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions(9,10).


Isotopic evidence from ice cores indicates that preindustrial-era geological methane emissions were lower than previously thought, suggesting that present-day emissions of methane from fossil fuels are underestimated.


  
Distinguishing Anthropogenic CO2 Emissions From Different Energy Intensive Industrial Sources Using OCO-2 Observations: A Case Study in Northern China 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (17) : 9462-9473
作者:  Wang, Songhan;  Zhang, Yongguang;  Hakkarainen, Janne;  Ju, Weimin;  Liu, Yongxue;  Jiang, Fei;  He, Wei
收藏  |  浏览/下载:10/0  |  提交时间:2019/04/09
anthropogenic CO2 emissions  energy intensive industrial sources  OCO-2 observations  XCO2  
Trans-boundary movement of mercury in the Northeast Asian region predicted by CAMQ-Hg from anthropogenic emissions distribution 期刊论文
ATMOSPHERIC RESEARCH, 2018, 203: 197-206
作者:  Sung, Jin-Ho;  Roy, Debananda;  Oh, Joo-Sung;  Back, Seung-Ki;  Jang, Ha-Na;  Kim, Seong-Heon;  Seo, Yong-Chil;  Kim, Jeong-Hun;  Lee, Chong Bum;  Han, Young-Ji
收藏  |  浏览/下载:15/0  |  提交时间:2019/04/09
Trans-boundary mercury  Anthropogenic sources  CMAQ-Hg model  Long-range transport  Contribution ratio