GSTDTAP

浏览/检索结果: 共23条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
国际研究表明未来几年对西南极冰盖的长期稳定至关重要 快报文章
资源环境快报,2025年第11期
作者:  魏艳红
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:375/0  |  提交时间:2025/06/16
West Antarctic Ice Sheet  Global Sea Level Rise  Reduce Emissions  
英国研究表明古代南极冰盖消融为未来气候情景提供见解 快报文章
资源环境快报,2025年第3期
作者:  魏艳红
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:466/0  |  提交时间:2025/02/16
Antarctic Ice Sheet  Sea Level Rise  Climate Models  
科学家首次发现大型冰盖融化的新机制 快报文章
地球科学快报,2024年第14期
作者:  张树良
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:584/0  |  提交时间:2024/07/25
BAS  Antarctic ice sheet  
新研究表明冰芯揭示了过去南极冰层的迅速消融 快报文章
资源环境快报,2024年第4期
作者:  魏艳红
Microsoft Word(19Kb)  |  收藏  |  浏览/下载:654/1  |  提交时间:2024/03/01
Ice Cores  West Antarctic Ice Sheet  Train Ice Sheet Models  
新模型预测出迄今为止最准确的南极冰盖融化 快报文章
资源环境快报,2023年第22期
作者:  魏艳红
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:470/0  |  提交时间:2023/11/30
Antarctic Ice Sheet Melt  Sea Level Rise  Movement of Tectonic Plates  
美国研究揭示南极基底融化对未来冰盖变化的影响 快报文章
资源环境快报,2022年第18期
作者:  薛明媚
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:601/0  |  提交时间:2022/10/01
Antarctic Ice Sheet  Basal Thaw  Sea Level Rise  
国际研究评估东南极洲冰盖对过去和未来气候变化的响应 快报文章
气候变化快报,2022年第17期
作者:  张雯欣,刘燕飞
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:671/0  |  提交时间:2022/09/05
East Antarctic Ice Sheet  Response  climate change  
南极冰盖流失将影响未来的气候变化 快报文章
资源环境快报,2020年第19期
作者:  薛明媚,王金平
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:438/0  |  提交时间:2020/10/15
Antarctic Ice Sheet  Future Climate Change  Loss  
Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial 期刊论文
NATURE, 2020, 583 (7817) : 554-+
作者:  T. Blackburn;  G. H. Edwards;  S. Tulaczyk;  M. Scudder;  G. Piccione;  B. Hallet;  N. McLean;  J. C. Zachos;  B. Cheney;  J. T. Babbe
收藏  |  浏览/下载:61/0  |  提交时间:2020/08/09

Uranium isotopes in subglacial precipitates from the Wilkes Basin of the East Antarctic Ice Sheet reveal ice retreat during a warm Pleistocene interglacial period about 400,000 years ago.


Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth'  s past interglacial warm periods(1-3). About 400,000 years ago, during the interglacial period known as Marine Isotopic Stage 11 (MIS11), the global temperature was 1 to 2 degrees Celsius greater(2)and sea level was 6 to 13 metres higher(1,3). Sea level estimates in excess of about 10 metres, however, have been discounted because these require a contribution from the East Antarctic Ice Sheet(3), which has been argued to have remained stable for millions of years before and includes MIS11(4,5). Here we show how the evolution of(234)U enrichment within the subglacial waters of East Antarctica recorded the ice sheet'  s response to MIS11 warming. Within the Wilkes Basin, subglacial chemical precipitates of opal and calcite record accumulation of(234)U (the product of rock-water contact within an isolated subglacial reservoir) up to 20 times higher than that found in marine waters. The timescales of(234)U enrichment place the inception of this reservoir at MIS11. Informed by the(234)U cycling observed in the Laurentide Ice Sheet, where(234)U accumulated during periods of ice stability(6)and was flushed to global oceans in response to deglaciation(7), we interpret our East Antarctic dataset to represent ice loss within the Wilkes Basin at MIS11. The(234)U accumulation within the Wilkes Basin is also observed in the McMurdo Dry Valleys brines(8-10), indicating(11)that the brine originated beneath the adjacent East Antarctic Ice Sheet. The marine origin of brine salts(10)and bacteria(12)implies that MIS11 ice loss was coupled with marine flooding. Collectively, these data indicate that during one of the warmest Pleistocene interglacials, the ice sheet margin at the Wilkes Basin retreated to near the precipitate location, about 700 kilometres inland from the current position of the ice margin, which-assuming current ice volumes-would have contributed about 3 to 4 metres(13)to global sea levels.


  
Ice front blocking of ocean heat transport to an Antarctic ice shelf 期刊论文
NATURE, 2020, 578 (7796) : 568-+
作者:  Alexandrov, Ludmil B.;  Kim, Jaegil;  Haradhvala, Nicholas J.;  Huang, Mi Ni;  Ng, Alvin Wei Tian;  Wu, Yang;  Boot, Arnoud;  Covington, Kyle R.;  Gordenin, Dmitry A.;  Bergstrom, Erik N.;  Islam, S. M. Ashiqul;  Lopez-Bigas, Nuria;  Klimczak, Leszek J.;  McPherson, John R.;  Morganella, Sandro;  Sabarinathan, Radhakrishnan;  Wheeler, David A.;  Mustonen, Ville;  Getz, Gad;  Rozen, Steven G.;  Stratton, Michael R.
收藏  |  浏览/下载:44/0  |  提交时间:2020/05/13

The front of the Getz Ice Shelf in West Antarctica creates an abrupt topographic step that deflects ocean currents, suppressing 70% of the heat delivery to the ice sheet.


Mass loss from the Antarctic Ice Sheet to the ocean has increased in recent decades, largely because the thinning of its floating ice shelves has allowed the outflow of grounded ice to accelerate(1,2). Enhanced basal melting of the ice shelves is thought to be the ultimate driver of change(2,3), motivating a recent focus on the processes that control ocean heat transport onto and across the seabed of the Antarctic continental shelf towards the ice(4-6). However, the shoreward heat flux typically far exceeds that required to match observed melt rates(2,7,8), suggesting that other critical controls exist. Here we show that the depth-independent (barotropic) component of the heat flow towards an ice shelf is blocked by the marked step shape of the ice front, and that only the depth-varying (baroclinic) component, which is typically much smaller, can enter the sub-ice cavity. Our results arise from direct observations of the Getz Ice Shelf system and laboratory experiments on a rotating platform. A similar blocking of the barotropic component may occur in other areas with comparable ice-bathymetry configurations, which may explain why changes in the density structure of the water column have been found to be a better indicator of basal melt rate variability than the heat transported onto the continental shelf(9). Representing the step topography of the ice front accurately in models is thus important for simulating ocean heat fluxes and induced melt rates.