GSTDTAP

浏览/检索结果: 共18条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes 期刊论文
Science, 2021
作者:  Chadi M. Saad-Roy;  Sinead E. Morris;  C. Jessica E. Metcalf;  Michael J. Mina;  Rachel E. Baker;  Jeremy Farrar;  Edward C. Holmes;  Oliver G. Pybus;  Andrea L. Graham;  Simon A. Levin;  Bryan T. Grenfell;  Caroline E. Wagner
收藏  |  浏览/下载:11/0  |  提交时间:2021/04/29
Partial immunity and SARS-CoV-2 mutations—Response 期刊论文
Science, 2021
作者:  Chadi M. Saad-Roy;  Sinead E. Morris;  C. Jessica E. Metcalf;  Michael J. Mina;  Rachel E. Baker;  Jeremy Farrar;  Edward C. Holmes;  Oliver G. Pybus;  Andrea L. Graham;  Simon A. Levin;  Bryan T. Grenfell;  Caroline E. Wagner
收藏  |  浏览/下载:10/0  |  提交时间:2021/04/29
Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga 期刊论文
Nature Communications, 2021
作者:  Xuyang Meng;  Jackie M. Kleinsasser;  Jeremy P. Richards;  Simon R. Tapster;  Pedro J. Jugo;  Adam C. Simon;  Daniel J. Kontak;  Laurence Robb;  Grant M. Bybee;  Jeffrey H. Marsh;  Richard A. Stern
收藏  |  浏览/下载:12/0  |  提交时间:2021/04/20
Future evolution of an eddy rich ocean associated with enhanced east Atlantic storminess in a coupled model projection 期刊论文
Geophysical Research Letters, 2021
作者:  Jeremy P. Grist;  Simon A. Josey;  Bablu Sinha;  Jennifer L. Catto;  Malcolm J. Roberts;  Andrew C. Coward
收藏  |  浏览/下载:11/0  |  提交时间:2021/04/06
Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years 期刊论文
Science, 2020
作者:  Chadi M. Saad-Roy;  Caroline E. Wagner;  Rachel E. Baker;  Sinead E. Morris;  Jeremy Farrar;  Andrea L. Graham;  Simon A. Levin;  Michael J. Mina;  C. Jessica E. Metcalf;  Bryan T. Grenfell
收藏  |  浏览/下载:10/0  |  提交时间:2020/11/20
Guidelines for Modeling and Reporting Health Effects of Climate Change Mitigation Actions 期刊论文
Environmental Health Perspectives, 2020
作者:  Jeremy J. Hess;  Nikhil Ranadive;  Chris Boyer;  Lukasz Aleksandrowicz;  Susan C. Anenberg;  Kristin Aunan;  Kristine Belesova;  Michelle L. Bell;  Sam Bickersteth;  Kathryn Bowen;  Marci Burden;  Diarmid Campbell-Lendrum;  Elizabeth Carlton;  Guéladio Cissé;  Francois Cohen;  Hancheng Dai;  Alan David Dangour;  Purnamita Dasgupta;  Howard Frumkin;  Peng Gong;  Robert J. Gould;  Andy Haines;  Simon Hales;  Ian Hamilton;  Tomoko Hasegawa;  Masahiro Hashizume;  Yasushi Honda;  Daniel E. Horton;  Alexandra Karambelas;  Ho Kim;  Satbyul Estella Kim;  Patrick L. Kinney;  Inza Kone;  Kim Knowlton;  Jos Lelieveld;  Vijay S. Limaye;  Qiyong Liu;  Lina Madaniyazi;  Micaela Elvira Martinez;  Denise L. Mauzerall;  James Milner;  Tara Neville;  Mark Nieuwenhuijsen;  Shonali Pachauri;  Frederica Perera;  Helen Pineo;  Justin V. Remais;  Rebecca K. Saari;  Jon Sampedro;  Pauline Scheelbeek;  Joel Schwartz;  Drew Shindell;  Priya Shyamsundar;  Timothy J. Taylor;  Cathryn Tonne;  Detlef Van Vuuren;  Can Wang;  Nicholas Watts;  J. Jason West;  Paul Wilkinson;  Stephen A. Wood;  James Woodcock;  Alistair Woodward;  Yang Xie;  Ying Zhang;  Kristie L. Ebi
收藏  |  浏览/下载:17/0  |  提交时间:2020/11/20
Spatial pattern of super-greenhouse warmth controlled by elevated specific humidity 期刊论文
Nature, 2020
作者:  Joep van Dijk;  Alvaro Fernandez;  Stefano M. Bernasconi;  Jeremy K. Caves Rugenstein;  Simon R. Passey;  Tim White
收藏  |  浏览/下载:5/0  |  提交时间:2020/11/09
Asynchronous carbon sink saturation in African and Amazonian tropical forests 期刊论文
NATURE, 2020, 579 (7797) : 80-+
作者:  Wannes Hubau;  Simon L. Lewis;  Oliver L. Phillips;  Kofi Affum-Baffoe;  Hans Beeckman;  Aida Cuní;  -Sanchez;  Armandu K. Daniels;  Corneille E. N. Ewango;  Sophie Fauset;  Jacques M. Mukinzi;  Douglas Sheil;  Bonaventure Sonké;  Martin J. P. Sullivan;  Terry C. H. Sunderland;  Hermann Taedoumg;  Sean C. Thomas;  Lee J. T. White;  Katharine A. Abernethy;  Stephen Adu-Bredu;  Christian A. Amani;  Timothy R. Baker;  Lindsay F. Banin;  Fidè;  le Baya;  Serge K. Begne;  Amy C. Bennett;  Fabrice Benedet;  Robert Bitariho;  Yannick E. Bocko;  Pascal Boeckx;  Patrick Boundja;  Roel J. W. Brienen;  Terry Brncic;  Eric Chezeaux;  George B. Chuyong;  Connie J. Clark;  Murray Collins;  James A. Comiskey;  David A. Coomes;  Greta C. Dargie;  Thales de Haulleville;  Marie Noel Djuikouo Kamdem;  Jean-Louis Doucet;  Adriane Esquivel-Muelbert;  Ted R. Feldpausch;  Alusine Fofanah;  Ernest G. Foli;  Martin Gilpin;  Emanuel Gloor;  Christelle Gonmadje;  Sylvie Gourlet-Fleury;  Jefferson S. Hall;  Alan C. Hamilton;  David J. Harris;  Terese B. Hart;  Mireille B. N. Hockemba;  Annette Hladik;  Suspense A. Ifo;  Kathryn J. Jeffery;  Tommaso Jucker;  Emmanuel Kasongo Yakusu;  Elizabeth Kearsley;  David Kenfack;  Alexander Koch;  Miguel E. Leal;  Aurora Levesley;  Jeremy A. Lindsell;  Janvier Lisingo;  Gabriela Lopez-Gonzalez;  Jon C. Lovett;  Jean-Remy Makana;  Yadvinder Malhi;  Andrew R. Marshall;  Jim Martin;  Emanuel H. Martin;  Faustin M. Mbayu;  Vincent P. Medjibe;  Vianet Mihindou;  Edward T. A. Mitchard;  Sam Moore;  Pantaleo K. T. Munishi;  Natacha Nssi Bengone;  Lucas Ojo;  Fidè;  le Evouna Ondo;  Kelvin S.-H. Peh;  Georgia C. Pickavance;  Axel Dalberg Poulsen;  John R. Poulsen;  Lan Qie;  Jan Reitsma;  Francesco Rovero;  Michael D. Swaine;  Joey Talbot;  James Taplin;  David M. Taylor;  Duncan W. Thomas;  Benjamin Toirambe;  John Tshibamba Mukendi;  Darlington Tuagben;  Peter M. Umunay;  Geertje M. F. van der Heijden;  Hans Verbeeck;  Jason Vleminckx;  Simon Willcock;  Hannsjö;  rg Wö;  ll;  John T. Woods;  Lise Zemagho
收藏  |  浏览/下载:23/0  |  提交时间:2020/05/13

Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions(1-3). Climate-driven vegetation models typically predict that this tropical forest '  carbon sink'  will continue for decades(4,5). Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests(6). Therefore the carbon sink responses of Earth'  s two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature(7-9). Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth'  s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass(10) reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth'  s climate.


  
An open-source drug discovery platform enables ultra-large virtual screens 期刊论文
NATURE, 2020, 580 (7805) : 663-+
作者:  Peron, Simon;  Pancholi, Ravi;  Voelcker, Bettina;  Wittenbach, Jason D.;  olafsdottir, H. Freyja;  Freeman, Jeremy;  Svoboda, Karel
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

VirtualFlow, an open-source drug discovery platform, enables the efficient preparation and virtual screening of ultra-large ligand libraries to identify molecules that bind with high affinity to target proteins.


On average, an approved drug currently costs US$2-3 billion and takes more than 10 years to develop(1). In part, this is due to expensive and time-consuming wet-laboratory experiments, poor initial hit compounds and the high attrition rates in the (pre-)clinical phases. Structure-based virtual screening has the potential to mitigate these problems. With structure-based virtual screening, the quality of the hits improves with the number of compounds screened(2). However, despite the fact that large databases of compounds exist, the ability to carry out large-scale structure-based virtual screening on computer clusters in an accessible, efficient and flexible manner has remained difficult. Here we describe VirtualFlow, a highly automated and versatile open-source platform with perfect scaling behaviour that is able to prepare and efficiently screen ultra-large libraries of compounds. VirtualFlow is able to use a variety of the most powerful docking programs. Using VirtualFlow, we prepared one of the largest and freely available ready-to-dock ligand libraries, with more than 1.4 billion commercially available molecules. To demonstrate the power of VirtualFlow, we screened more than 1 billion compounds and identified a set of structurally diverse molecules that bind to KEAP1 with submicromolar affinity. One of the lead inhibitors (iKeap1) engages KEAP1 with nanomolar affinity (dissociation constant (K-d) = 114 nM) and disrupts the interaction between KEAP1 and the transcription factor NRF2. This illustrates the potential of VirtualFlow to access vast regions of the chemical space and identify molecules that bind with high affinity to target proteins.


  
Ball-and-chain inactivation in a calcium-gated potassium channel 期刊论文
NATURE, 2020, 580 (7802) : 288-+
作者:  Peron, Simon;  Pancholi, Ravi;  Voelcker, Bettina;  Wittenbach, Jason D.;  olafsdottir, H. Freyja;  Freeman, Jeremy;  Svoboda, Karel
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Cryo-electron microscopy structures and molecular dynamics simulations of the calcium-activated potassium channel MthK from Methanobacterium thermoautotrophicum are used to show that gating of this channel involves a ball-and-chain inactivation mechanism mediated by a previously unresolved N-terminal peptide.


Inactivation is the process by which ion channels terminate ion flux through their pores while the opening stimulus is still present(1). In neurons, inactivation of both sodium and potassium channels is crucial for the generation of action potentials and regulation of firing frequency(1,2). A cytoplasmic domain of either the channel or an accessory subunit is thought to plug the open pore to inactivate the channel via a '  ball-and-chain'  mechanism(3-7). Here we use cryo-electron microscopy to identify the molecular gating mechanism in calcium-activated potassium channels by obtaining structures of the MthK channel from Methanobacterium thermoautotrophicum-a purely calcium-gated and inactivating channel-in a lipid environment. In the absence of Ca2+, we obtained a single structure in a closed state, which was shown by atomistic simulations to be highly flexible in lipid bilayers at ambient temperature, with large rocking motions of the gating ring and bending of pore-lining helices. In Ca2+-bound conditions, we obtained several structures, including multiple open-inactivated conformations, further indication of a highly dynamic protein. These different channel conformations are distinguished by rocking of the gating rings with respect to the transmembrane region, indicating symmetry breakage across the channel. Furthermore, in all conformations displaying open channel pores, the N terminus of one subunit of the channel tetramer sticks into the pore and plugs it, with free energy simulations showing that this is a strong interaction. Deletion of this N terminus leads to functionally non-inactivating channels and structures of open states without a pore plug, indicating that this previously unresolved N-terminal peptide is responsible for a ball-and-chain inactivation mechanism.