GSTDTAP

浏览/检索结果: 共2条,第1-2条 帮助

已选(0)清除 条数/页:   排序方式:
Actinide 2-metallabiphenylenes that satisfy Huckel's rule 期刊论文
NATURE, 2020, 578 (7796) : 563-+
作者:  Achar, Yathish Jagadheesh;  Adhil, Mohamood;  Choudhary, Ramveer;  Gilbert, Nick;  Foiani, Marco
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Aromaticity and antiaromaticity, as defined by Huckel'  s rule, are key ideas in organic chemistry, and are both exemplified in biphenylene(1-3)-a molecule that consists of two benzene rings joined by a four-membered ring at its core. Biphenylene analogues in which one of the benzene rings has been replaced by a different (4n + 2) pi-electron system have so far been associated only with organic compounds(4,5). In addition, efforts to prepare a zirconabiphenylene compound resulted in the isolation of a bis(alkyne) zirconocene complex instead(6). Here we report the synthesis and characterization of, to our knowledge, the first 2-metallabiphenylene compounds. Single-crystal X-ray diffraction studies reveal that these complexes have nearly planar, 11-membered metallatricycles with metrical parameters that compare well with those reported for biphenylene. Nuclear magnetic resonance spectroscopy, in addition to nucleus-independent chemical shift calculations, provides evidence that these complexes contain an antiaromatic cyclobutadiene ring and an aromatic benzene ring. Furthermore, spectroscopic evidence, Kohn-Sham molecular orbital compositions and natural bond orbital calculations suggest covalency and delocalization of the uranium f(2) electrons with the carbon-containing ligand.


The synthesis of uranium- and thorium-containing metallabiphenylenes demonstrates the ability of the actinides to stabilize aromatic/antiaromatic structures where transition metals have failed.


  
Attosecond pulse shaping using a seeded free-electron laser 期刊论文
NATURE, 2020
作者:  Achar, Yathish Jagadheesh;  Adhil, Mohamood;  Choudhary, Ramveer;  Gilbert, Nick;  Foiani, Marco
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Generation of intense attosecond waveforms with independently controllable amplitude and phase is performed by using a seeded free-electron laser.


Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales(1-3). The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation(4-7). Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters(8,9), multilayer mirrors(10) and manipulation of the driving field(11). However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules(12,13). Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot(14-16). Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser(17). We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.