GSTDTAP

浏览/检索结果: 共20条,第1-10条 帮助

已选(0)清除 条数/页:   排序方式:
Global tropospheric ozone trends, attributions, and radiative impacts in 1995-2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations 期刊论文
Atmospheric Chemistry and Physics, 2022
作者:  Haolin Wang, Xiao Lu, Daniel J. Jacob, Owen R. Cooper, Kai-Lan Chang, Ke Li, Meng Gao, Yiming Liu, Bosi Sheng, Kai Wu, Tongwen Wu, Jie Zhang, Bastien Sauvage, Philippe Nédélec, Romain Blot, and Shaojia Fan
收藏  |  浏览/下载:18/0  |  提交时间:2022/07/08
COVID‐19 Crisis Reduces Free Tropospheric Ozone across the Northern Hemisphere 期刊论文
Geophysical Research Letters, 2021
作者:  Wolfgang Steinbrecht;  Dagmar Kubistin;  Christian Plass‐;  ;  lmer;  Jonathan Davies;  David W. Tarasick;  Peter von der Gathen;  Holger Deckelmann;  Nis Jepsen;  Rigel Kivi;  Norrie Lyall;  Matthias Palm;  Justus Notholt;  Bogumil Kois;  Peter Oelsner;  Marc Allaart;  Ankie Piters;  Michael Gill;  Roeland Van Malderen;  Andy W. Delcloo;  Ralf Sussmann;  Emmanuel Mahieu;  Christian Servais;  Gonzague Romanens;  Rene Stü;  bi;  Gerard Ancellet;  Sophie Godin‐;  Beekmann;  Shoma Yamanouchi;  Kimberly Strong;  Bryan Johnson;  Patrick Cullis;  Irina Petropavlovskikh;  James W. Hannigan;  Jose‐;  Luis Hernandez;  Ana Diaz Rodriguez;  Tatsumi Nakano;  Fernando Chouza;  Thierry Leblanc;  Carlos Torres;  Omaira Garcia;  Amelie N. Rö;  hling;  Matthias Schneider;  Thomas Blumenstock;  Matt Tully;  Clare Paton‐;  Walsh;  Nicholas Jones;  Richard Querel;  Susan Strahan;  Ryan M. Stauffer;  Anne M. Thompson;  Antje Inness;  Richard Engelen;  Kai‐;  Lan Chang;  Owen R. Cooper
收藏  |  浏览/下载:14/0  |  提交时间:2021/02/17
Contributions of World Regions to the Global Tropospheric Ozone Burden Change from 1980 to 2010 期刊论文
Geophysical Research Letters, 2020
作者:  Yuqiang Zhang;  J. Jason West;  Louisa K. Emmons;  Johannes Flemming;  Jan Eiof Jonson;  Marianne Tronstad Lund;  Takashi Sekiya;  Kengo Sudo;  Audrey Gaudel;  Kai‐;  Lan Chang;  Philippe Né;  ;  lec;  Valé;  rie Thouret
收藏  |  浏览/下载:9/0  |  提交时间:2020/12/22
Efficient vertical transport of black carbon in the planetary boundary layer 期刊论文
Geophysical Research Letters, 2020
作者:  Dantong Liu;  Kang Hu;  Delong Zhao;  Shuo Ding;  Yunfei Wu;  Chang Zhou;  Chenjie Yu;  Ping Tian;  Quan Liu;  Kai Bi;  Yangzhou Wu;  Bo Hu;  Dongsheng Ji;  Shaofei Kong;  Bin Ouyang;  Hui He;  Mengyu Huang;  Deping Ding
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/14
Late Paleozoic tectonic transition from subduction to post-collisional extension in Eastern Tianshan, Central Asian Orogenic Belt 期刊论文
GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2020, 132 (7-8) : 1756-1774
作者:  Muhtar, M. N.;  Wu, Chang-Zhi;  Santosh, M.;  Lei, Ru-Xiong;  Gu, Lian-Xing;  Wang, Si-Meng;  Gan, Kai
收藏  |  浏览/下载:11/0  |  提交时间:2020/08/18
Influence of gravity wave temperature anomaly and its verticalgradient on cirrus clouds in the tropical tropopause layer - asatellite-based view 期刊论文
Atmospheric Chemistry and Physics, 2020
作者:  Kai-Wei Chang and Tristan L'Ecuyer
收藏  |  浏览/下载:15/0  |  提交时间:2020/05/13
The water lily genome and the early evolution of flowering plants 期刊论文
NATURE, 2020, 577 (7788) : 79-+
作者:  Zhang, Liangsheng;  Chen, Fei;  Zhang, Xingtan;  Li, Zhen;  Zhao, Yiyong;  Lohaus, Rolf;  Chang, Xiaojun;  Dong, Wei;  Ho, Simon Y. W.;  Liu, Xing;  Song, Aixia;  Chen, Junhao;  Guo, Wenlei;  Wang, Zhengjia;  Zhuang, Yingyu;  Wang, Haifeng;  Chen, Xuequn;  Hu, Juan;  Liu, Yanhui;  Qin, Yuan;  Wang, Kai;  Dong, Shanshan;  Liu, Yang;  Zhang, Shouzhou;  Yu, Xianxian;  Wu, Qian;  Wang, Liangsheng;  Yan, Xueqing;  Jiao, Yuannian;  Kong, Hongzhi;  Zhou, Xiaofan;  Yu, Cuiwei;  Chen, Yuchu;  Li, Fan;  Wang, Jihua;  Chen, Wei;  Chen, Xinlu;  Jia, Qidong;  Zhang, Chi;  Jiang, Yifan;  Zhang, Wanbo;  Liu, Guanhua;  Fu, Jianyu;  Chen, Feng;  Ma, Hong;  Van de Peer, Yves;  Tang, Haibao
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms(1-3). Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


  
Olfactory receptor and circuit evolution promote host specialization 期刊论文
NATURE, 2020
作者:  Chen, Tse-An;  Chuu, Chih-Piao;  Tseng, Chien-Chih;  Wen, Chao-Kai;  Wong, H. -S. Philip;  Pan, Shuangyuan;  Li, Rongtan;  Chao, Tzu-Ang;  Chueh, Wei-Chen;  Zhang, Yanfeng;  Fu, Qiang;  Yakobson, Boris I.;  Chang, Wen-Hao;  Li, Lain-Jong
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

The evolution of animal behaviour is poorly understood(1,2). Despite numerous correlations between interspecific divergence in behaviour and nervous system structure and function, demonstrations of the genetic basis of these behavioural differences remain rare(3-5). Here we develop a neurogenetic model, Drosophila sechellia, a species that displays marked differences in behaviour compared to its close cousin Drosophila melanogaster(6,7), which are linked to its extreme specialization on noni fruit (Morinda citrifolia)(8-16). Using calcium imaging, we identify olfactory pathways in D. sechellia that detect volatiles emitted by the noni host. Our mutational analysis indicates roles for different olfactory receptors in long- and short-range attraction to noni, and our cross-species allele-transfer experiments demonstrate that the tuning of one of these receptors is important for species-specific host-seeking. We identify the molecular determinants of this functional change, and characterize their evolutionary origin and behavioural importance. We perform circuit tracing in the D. sechellia brain, and find that receptor adaptations are accompanied by increased sensory pooling onto interneurons as well as species-specific central projection patterns. This work reveals an accumulation of molecular, physiological and anatomical traits that are linked to behavioural divergence between species, and defines a model for investigating speciation and the evolution of the nervous system.


A neurogenetic model, Drosophila sechellia-a relative of Drosophila melanogaster that has developed an extreme specialization for a single host plant-sheds light on the evolution of interspecific differences in behaviour.


  
Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (9) : 4823-4830
作者:  Zhang, Yao;  Qin, Wei;  Hou, Lei;  Zakem, Emily J.;  Wan, Xianhui;  Zhao, Zihao;  Liu, Li;  Hunt, Kristopher A.;  Jiao, Nianzhi;  Kao, Shuh-Ji;  Tang, Kai;  Xie, Xiabing;  Shen, Jiaming;  Li, Yufang;  Chen, Mingming;  Dai, Xiaofeng;  Liu, Chang;  Deng, Wenchao;  Dai, Minhan;  Ingalls, Anitra E.;  Stahl, David A.;  Herndl, Gerhard J.
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/13
nitrification  dark ocean  nitrogen flux  carbon fixation  homeostasis  
Tail-propelled aquatic locomotion in a theropod dinosaur 期刊论文
NATURE, 2020
作者:  Banerjee, Antara;  Fyfe, John C.;  Polvani, Lorenzo M.;  Waugh, Darryn;  Chang, Kai-Lan
收藏  |  浏览/下载:80/0  |  提交时间:2020/07/03

Discovery that the giant theropod dinosaur Spinosaurus has a large flexible tail indicates that it was primarily aquatic and swam in a similar manner to extant tail-propelled aquatic vertebrates.


In recent decades, intensive research on non-avian dinosaurs has strongly suggested that these animals were restricted to terrestrial environments(1). Historical proposals that some groups, such as sauropods and hadrosaurs, lived in aquatic environments(2,3) were abandoned decades ago(4-6). It has recently been argued that at least some of the spinosaurids-an unusual group of large-bodied theropods of the Cretaceous era-were semi-aquatic(7,8), but this idea has been challenged on anatomical, biomechanical and taphonomic grounds, and remains controversial(9-11). Here we present unambiguous evidence for an aquatic propulsive structure in a dinosaur, the giant theropod Spinosaurus aegyptiacus(7,12). This dinosaur has a tail with an unexpected and unique shape that consists of extremely tall neural spines and elongate chevrons, which forms a large, flexible fin-like organ capable of extensive lateral excursion. Using a robotic flapping apparatus to measure undulatory forces in physical models of different tail shapes, we show that the tail shape of Spinosaurus produces greater thrust and efficiency in water than the tail shapes of terrestrial dinosaurs and that these measures of performance are more comparable to those of extant aquatic vertebrates that use vertically expanded tails to generate forward propulsion while swimming. These results are consistent with the suite of adaptations for an aquatic lifestyle and piscivorous diet that have previously been documented for Spinosaurus(7,13,14). Although developed to a lesser degree, aquatic adaptations are also found in other members of the spinosaurid clade(15,16), which had a near-global distribution and a stratigraphic range of more than 50 million years(14), pointing to a substantial invasion of aquatic environments by dinosaurs.