GSTDTAP

浏览/检索结果: 共2条,第1-2条 帮助

已选(0)清除 条数/页:   排序方式:
Structure and mechanism of the ER-based glucosyltransferase ALG6 期刊论文
NATURE, 2020, 579 (7799) : 443-+
作者:  van Veen, Sarah;  Martin, Shaun;  Van den Haute, Chris;  Benoy, Veronick;  Lyons, Joseph;  Vanhoutte, Roeland;  Kahler, Jan Pascal;  Decuypere, Jean-Paul;  Gelders, Geraldine;  Lambie, Eric;  Zielich, Jeffrey;  Swinnen, Johannes V.;  Annaert, Wim;  Agostinis, Patrizia;  Ghesquiere, Bart;  Verhelst, Steven;  Baekelandt, Veerle;  Eggermont, Jan;  Vangheluwe, Peter
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

Analyses reveal a previously undescribed transmembrane protein fold in the endoplasmic reticulum-based glucosyltransferase ALG6 and provide a structural basis for understanding the glucose transfer mechanism.


In eukaryotic protein N-glycosylation, a series of glycosyltransferases catalyse the biosynthesis of a dolichylpyrophosphate-linked oligosaccharide before its transfer onto acceptor proteins(1). The final seven steps occur in the lumen of the endoplasmic reticulum (ER) and require dolichylphosphate-activated mannose and glucose as donor substrates(2). The responsible enzymes-ALG3, ALG9, ALG12, ALG6, ALG8 and ALG10-are glycosyltransferases of the C-superfamily (GT-Cs), which are loosely defined as containing membrane-spanning helices and processing an isoprenoid-linked carbohydrate donor substrate(3,4). Here we present the cryo-electron microscopy structure of yeast ALG6 at 3.0 angstrom resolution, which reveals a previously undescribed transmembrane protein fold. Comparison with reported GT-C structures suggests that GT-C enzymes contain a modular architecture with a conserved module and a variable module, each with distinct functional roles. We used synthetic analogues of dolichylphosphate-linked and dolichylpyrophosphate-linked sugars and enzymatic glycan extension to generate donor and acceptor substrates using purified enzymes of the ALG pathway to recapitulate the activity of ALG6 in vitro. A second cryo-electron microscopy structure of ALG6 bound to an analogue of dolichylphosphate-glucose at 3.9 angstrom resolution revealed the active site of the enzyme. Functional analysis of ALG6 variants identified a catalytic aspartate residue that probably acts as a general base. This residue is conserved in the GT-C superfamily. Our results define the architecture of ER-luminal GT-C enzymes and provide a structural basis for understanding their catalytic mechanisms.


  
Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy 期刊论文
NATURE COMMUNICATIONS, 2018, 9
作者:  Talebi, Ali;  Dehairs, Jonas;  Rambow, Florian;  Rogiers, Aljosja;  Nittner, David;  Derua, Rita;  Vanderhoydonc, Frank;  Duarte, Joao A. G.;  Bosisio, Francesca;  Van den Eynde, Kathleen;  Nys, Kris;  Perez, Monica Vara;  Agostinis, Patrizia;  Waelkens, Etienne;  Van den Oord, Joost;  Fendt, Sarah-Maria;  Marine, Jean-Christophe;  Swinnen, Johannes V.
收藏  |  浏览/下载:4/0  |  提交时间:2019/11/27