GSTDTAP

浏览/检索结果: 共55条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
黑碳是影响冰川融化的原因之一 快报文章
气候变化快报,2021年第13期
作者:  秦冰雪
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:464/0  |  提交时间:2021/07/05
Glaciers Melting  Climate Change  Black Carbon  
Black Carbon and Precipitation: An Energetics Perspective 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (13)
作者:  Sand, M.;  Samset, B. H.;  Tsigaridis, K.;  Bauer, S. E.;  Myhre, G.
收藏  |  浏览/下载:14/0  |  提交时间:2020/08/18
black carbon aerosols  rapid adjustments  precipitation  energy budget  
Impacts of Two East Asian Atmospheric Circulation Modes on Black Carbon Aerosol Over the Tibetan Plateau in Winter 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (12)
作者:  Yuan, Tiangang;  Chen, Siyu;  Wang, Lin;  Yang, Yaoxian;  Bi, Hongru;  Zhang, Xiaorui;  Zhang, Yue
收藏  |  浏览/下载:13/0  |  提交时间:2020/08/18
black carbon  East Asian winter monsoon  Tibetan Plateau  transport  WRF-Chem  
Assessing California Wintertime Precipitation Responses to Various Climate Drivers 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (12)
作者:  Allen, Robert J.;  Lamarque, Jean-Francois;  Watson-Parris, Duncan;  Olivie, Dirk
收藏  |  浏览/下载:8/0  |  提交时间:2020/08/18
Precipitation  California  sulfate  black carbon  aerosols  greenhouse gases  
Twentieth Century Black Carbon and Dust Deposition on South Cascade Glacier, Washington State, USA, as Reconstructed From a 158-m-Long Ice Core 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (11)
作者:  Kaspari, S. D.;  Pittenger, D.;  Jenk, T. M.;  Morgenstern, U.;  Schwikowski, M.;  Buenning, N.;  Stott, L.
收藏  |  浏览/下载:16/0  |  提交时间:2020/08/18
light absorbing particles  black carbon  dust  ice core  cascades  melt  
Global Measurements of Brown Carbon and Estimated Direct Radiative Effects 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (13)
作者:  Zeng, Linghan;  Zhang, Aoxing;  Wang, Yuhang;  Wagner, Nicholas L.;  Katich, Joseph M.;  Schwarz, Joshua P.;  Schill, Gregory P.;  Brock, Charles;  Froyd, Karl D.;  Murphy, Daniel M.;  Williamson, Christina J.;  Kupc, Agnieszka;  Scheuer, Eric;  Dibb, Jack;  Weber, Rodney J.
收藏  |  浏览/下载:14/0  |  提交时间:2020/06/22
aerosol  light absorption  brown carbon  radiation forcing  black carbon  biomass burning  
Temporal Characteristics and Potential Sources of Black Carbon in Megacity Shanghai, China 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (9)
作者:  Wei, C.;  Wang, M. H.;  Fu, Q. Y.;  Dai, C.;  Huang, R.;  Bao, Q.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
black carbon  temporal variation  source apportionment  meteorological condition  back trajectory  
Black Carbon Particles Do Not Matter for Immersion Mode Ice Nucleation 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (11)
作者:  Kanji, Zamin A.;  Welti, Andre;  Corbin, Joel C.;  Mensah, Amewu A.
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/13
Heterogeneous ice nucleation  immersion freezing  soot  black carbon  surface area  mixed phase clouds  
Dust Deposited on Snow Cover in the San Juan Mountains, Colorado, 2011-2016: Compositional Variability Bearing on Snow-Melt Effects 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (7)
作者:  Reynolds, Richard L.;  Goldstein, Harland L.;  Moskowitz, Bruce M.;  Kokaly, Raymond F.;  Munson, Seth M.;  Solheid, Peat;  Breit, George N.;  Lawrence, Corey R.;  Derry, Jeff
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
black carbon  dust-on-snow  iron oxide minerals  light-absorbing particles  magnetic properties  reflectance spectroscopy  
Gram-scale bottom-up flash graphene synthesis 期刊论文
NATURE, 2020, 577 (7792) : 647-651
作者:  Long, Haizhen;  Zhang, Liwei;  Lv, Mengjie;  Wen, Zengqi;  Zhang, Wenhao;  Chen, Xiulan;  Zhang, Peitao;  Li, Tongqing;  Chang, Luyuan;  Jin, Caiwei;  Wu, Guozhao;  Wang, Xi;  Yang, Fuquan;  Pei, Jianfeng;  Chen, Ping;  Margueron, Raphael;  Deng, Haiteng;  Zhu, Mingzhao;  Li, Guohong
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment(1-3). Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step(3,4). Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution(4-6). Here we show that flash Joule heating of inexpensive carbon sources-such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste-can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source  when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials.


Flash Joule heating of inexpensive carbon sources is used to produce gram-scale quantities of high-quality graphene in under a second, without the need for a furnace, solvents or reactive gases.