GSTDTAP

浏览/检索结果: 共2条,第1-2条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
Senolytic CAR T cells reverse senescence-associated pathologies 期刊论文
NATURE, 2020, 583 (7814) : 127-+
作者:  Cortez, Jessica T.;  Montauti, Elena;  Shifrut, Eric;  Gatchalian, Jovylyn;  Zhang, Yusi;  Shaked, Oren;  Xu, Yuanming;  Roth, Theodore L.;  Simeonov, Dimitre R.;  Zhang, Yana;  Chen, Siqi;  Li, Zhongmei;  Woo, Jonathan M.;  Ho, Josephine;  Vogel, Ian A.
收藏  |  浏览/下载:67/0  |  提交时间:2020/07/03

Cellular senescence is characterized by stable cell-cycle arrest and a secretory program that modulates the tissue microenvironment(1,2). Physiologically, senescence serves as a tumour-suppressive mechanism that prevents the expansion of premalignant cells(3,4)and has a beneficial role in wound-healing responses(5,6). Pathologically, the aberrant accumulation of senescent cells generates an inflammatory milieu that leads to chronic tissue damage and contributes to diseases such as liver and lung fibrosis, atherosclerosis, diabetes and osteoarthritis(1,7). Accordingly, eliminating senescent cells from damaged tissues in mice ameliorates the symptoms of these pathologies and even promotes longevity(1,2,8-10). Here we test the therapeutic concept that chimeric antigen receptor (CAR) T cells that target senescent cells can be effective senolytic agents. We identify the urokinase-type plasminogen activator receptor (uPAR)(11)as a cell-surface protein that is broadly induced during senescence and show that uPAR-specific CAR T cells efficiently ablate senescent cells in vitro and in vivo. CAR T cells that target uPAR extend the survival of mice with lung adenocarcinoma that are treated with a senescence-inducing combination of drugs, and restore tissue homeostasis in mice in which liver fibrosis is induced chemically or by diet. These results establish the therapeutic potential of senolytic CAR T cells for senescence-associated diseases.


Chimeric antigen receptor (CAR) T cells targeting uPAR, a cell-surface protein that is upregulated on senescent cells, eliminate senescent cells in vitro and in vivo and reduce liver fibrosis in mice.


  
Two conserved epigenetic regulators prevent healthy ageing 期刊论文
NATURE, 2020
作者:  Yoshida, Kenichi;  Gowers, Kate H. C.;  Lee-Six, Henry;  Chandrasekharan, Deepak P.;  Coorens, Tim;  Maughan, Elizabeth F.;  Beal, Kathryn;  Menzies, Andrew;  Millar, Fraser R.;  Anderson, Elizabeth;  Clarke, Sarah E.;  Pennycuick, Adam;  Thakrar, Ricky M.;  Butler, Colin R.;  Kakiuchi, Nobuyuki;  Hirano, Tomonori;  Hynds, Robert E.;  Stratton, Michael R.;  Martincorena, Inigo;  Janes, Sam M.;  Campbell, Peter J.
收藏  |  浏览/下载:34/0  |  提交时间:2020/07/03

It has long been assumed that lifespan and healthspan correlate strongly, yet the two can be clearly dissociated(1-6). Although there has been a global increase in human life expectancy, increasing longevity is rarely accompanied by an extended healthspan(4,7). Thus, understanding the origin of healthy behaviours in old people remains an important and challenging task. Here we report a conserved epigenetic mechanism underlying healthy ageing. Through genome-wide RNA-interference-based screening of genes that regulate behavioural deterioration in ageing Caenorhabditis elegans, we identify 59 genes as potential modulators of the rate of age-related behavioural deterioration. Among these modulators, we found that a neuronal epigenetic reader, BAZ-2, and a neuronal histone 3 lysine 9 methyltransferase, SET-6, accelerate behavioural deterioration in C. elegans by reducing mitochondrial function, repressing the expression of nuclear-encoded mitochondrial proteins. This mechanism is conserved in cultured mouse neurons and human cells. Examination of human databases(8,9) shows that expression of the human orthologues of these C. elegans regulators, BAZ2B and EHMT1, in the frontal cortex increases with age and correlates positively with the progression of Alzheimer'  s disease. Furthermore, ablation of Baz2b, the mouse orthologue of BAZ-2, attenuates age-dependent body-weight gain and prevents cognitive decline in ageing mice. Thus our genome-wide RNA-interference screen in C. elegans has unravelled conserved epigenetic negative regulators of ageing, suggesting possible ways to achieve healthy ageing.


Two epigenetic regulators-identified in an RNA interference screen in Caenhorhabditis elegans, and conserved in mammals-diminish mitochondrial function and accelerate the age-related deterioration of behaviour.