GSTDTAP

浏览/检索结果: 共15条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
科学家建议建立新的南极观测系统 快报文章
地球科学快报,2023年第20期
作者:  王立伟
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:552/0  |  提交时间:2023/10/25
Antarctic  observing system  
研究指出南极洲面临“一系列极端事件”的风险 快报文章
地球科学快报,2023年第16期
作者:  王立伟
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:544/0  |  提交时间:2023/08/26
Antarctic  extreme events  
南极深海环流减缓将对深海结构及其化学成分造成持续影响 快报文章
地球科学快报,2023年第11期
作者:  王立伟
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:549/0  |  提交时间:2023/06/10
Antarctic  deep ocean currents  
科学家通过绘制南极冰盖下的地热图以揭示其对全球变暖的响应 快报文章
地球科学快报,2022年第24期
作者:  王立伟
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:692/0  |  提交时间:2022/12/25
Antarctic  tectonics  ice sheets  
科学家首次揭示南极冰层深处黄钾铁矾的形成机理 快报文章
地球科学快报,2021年第3期
作者:  张树良
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:412/0  |  提交时间:2021/02/09
Jarosite  formation mechanism  Antarctic  ice  
Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial 期刊论文
NATURE, 2020, 583 (7817) : 554-+
作者:  T. Blackburn;  G. H. Edwards;  S. Tulaczyk;  M. Scudder;  G. Piccione;  B. Hallet;  N. McLean;  J. C. Zachos;  B. Cheney;  J. T. Babbe
收藏  |  浏览/下载:19/0  |  提交时间:2020/08/09

Uranium isotopes in subglacial precipitates from the Wilkes Basin of the East Antarctic Ice Sheet reveal ice retreat during a warm Pleistocene interglacial period about 400,000 years ago.


Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth'  s past interglacial warm periods(1-3). About 400,000 years ago, during the interglacial period known as Marine Isotopic Stage 11 (MIS11), the global temperature was 1 to 2 degrees Celsius greater(2)and sea level was 6 to 13 metres higher(1,3). Sea level estimates in excess of about 10 metres, however, have been discounted because these require a contribution from the East Antarctic Ice Sheet(3), which has been argued to have remained stable for millions of years before and includes MIS11(4,5). Here we show how the evolution of(234)U enrichment within the subglacial waters of East Antarctica recorded the ice sheet'  s response to MIS11 warming. Within the Wilkes Basin, subglacial chemical precipitates of opal and calcite record accumulation of(234)U (the product of rock-water contact within an isolated subglacial reservoir) up to 20 times higher than that found in marine waters. The timescales of(234)U enrichment place the inception of this reservoir at MIS11. Informed by the(234)U cycling observed in the Laurentide Ice Sheet, where(234)U accumulated during periods of ice stability(6)and was flushed to global oceans in response to deglaciation(7), we interpret our East Antarctic dataset to represent ice loss within the Wilkes Basin at MIS11. The(234)U accumulation within the Wilkes Basin is also observed in the McMurdo Dry Valleys brines(8-10), indicating(11)that the brine originated beneath the adjacent East Antarctic Ice Sheet. The marine origin of brine salts(10)and bacteria(12)implies that MIS11 ice loss was coupled with marine flooding. Collectively, these data indicate that during one of the warmest Pleistocene interglacials, the ice sheet margin at the Wilkes Basin retreated to near the precipitate location, about 700 kilometres inland from the current position of the ice margin, which-assuming current ice volumes-would have contributed about 3 to 4 metres(13)to global sea levels.


  
英国南极调查局应对COVID-19的短期计划及优先事项 快报文章
地球科学快报,2020年第10期
作者:  刘文浩
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:323/0  |  提交时间:2020/05/25
Britain  antarctic  survey  
Temperate rainforests near the South Pole during peak Cretaceous warmth 期刊论文
NATURE, 2020, 580 (7801) : 81-+
作者:  Johann P. Klages;  Ulrich Salzmann;  Torsten Bickert;  Claus-Dieter Hillenbrand;  Karsten Gohl;  Gerhard Kuhn;  Steven M. Bohaty;  ;  rgen Titschack;  Juliane Mü;  ller;  Thomas Frederichs;  Thorsten Bauersachs;  Werner Ehrmann;  Tina van de Flierdt;  Patric Simõ;  es Pereira;  Robert D. Larter;  Gerrit Lohmann;  Igor Niezgodzki;  Gabriele Uenzelmann-Neben;  Maximilian Zundel;  Cornelia Spiegel;  Chris Mark;  David Chew;  Jane E. Francis;  Gernot Nehrke;  Florian Schwarz;  James A. Smith;  Tim Freudenthal;  Oliver Esper;  Heiko Pä;  like;  Thomas A. Ronge;  Ricarda Dziadek
收藏  |  浏览/下载:12/0  |  提交时间:2020/05/13

The mid-Cretaceous period was one of the warmest intervals of the past 140 million years(1-5), driven by atmospheric carbon dioxide levels of around 1,000 parts per million by volume(6). In the near absence of proximal geological records from south of the Antarctic Circle, it is disputed whether polar ice could exist under such environmental conditions. Here we use a sedimentary sequence recovered from the West Antarctic shelf-the southernmost Cretaceous record reported so far-and show that a temperate lowland rainforest environment existed at a palaeolatitude of about 82 degrees S during the Turonian-Santonian age (92 to 83 million years ago). This record contains an intact 3-metre-long network of in situ fossil roots embedded in a mudstone matrix containing diverse pollen and spores. A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric carbon dioxide concentrations of 1,120-1,680 parts per million by volume and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo under high levels of atmospheric carbon dioxide.


  
A pause in Southern Hemisphere circulation trends due to the Montreal Protocol 期刊论文
NATURE, 2020, 579 (7800) : 544-548
作者:  Imai, Yu;  Meyer, Kirsten J.;  Iinishi, Akira;  Favre-Godal, Quentin;  Green, Robert;  Manuse, Sylvie;  Caboni, Mariaelena;  Mori, Miho;  Niles, Samantha;  Ghiglieri, Meghan;  Honrao, Chandrashekhar;  Ma, Xiaoyu;  Guo, Jason J.;  Makriyannis, Alexandros;  Linares-Otoya, Luis;  Boehringer, Nils;  Wuisan, Zerlina G.;  Kaur, Hundeep;  Wu, Runrun;  Mateus, Andre
收藏  |  浏览/下载:20/0  |  提交时间:2020/05/13

Observations show robust near-surface trends in Southern Hemisphere tropospheric circulation towards the end of the twentieth century, including a poleward shift in the mid-latitude jet(1,2), a positive trend in the Southern Annular Mode(1,3-6) and an expansion of the Hadley cell(7,8). It has been established that these trends were driven by ozone depletion in the Antarctic stratosphere due to emissions of ozone-depleting substances(9-11). Here we show that these widely reported circulation trends paused, or slightly reversed, around the year 2000. Using a pattern-based detection and attribution analysis of atmospheric zonal wind, we show that the pause in circulation trends is forced by human activities, and has not occurred owing only to internal or natural variability of the climate system. Furthermore, we demonstrate that stratospheric ozone recovery, resulting from the Montreal Protocol, is the key driver of the pause. Because pre-2000 circulation trends have affected precipitation(12-14), and potentially ocean circulation and salinity(15-17), we anticipate that a pause in these trends will have wider impacts on the Earth system. Signatures of the effects of the Montreal Protocol and the associated stratospheric ozone recovery might therefore manifest, or have already manifested, in other aspects of the Earth system.


  
Tracking of marine predators to protect Southern Ocean ecosystems 期刊论文
NATURE, 2020
作者:  Kim, Eugene;  Kerssemakers, Jacob;  Shaltiel, Indra A.;  Haering, Christian H.;  Dekker, Cees
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

Tracking data from 17 marine predator species in the Southern Ocean are used to identify Areas of Ecological Significance, the protection of which could help to mitigate increasing pressures on Southern Ocean ecosystems.


Southern Ocean ecosystems are under pressure from resource exploitation and climate change(1,2). Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40 degrees S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.