GSTDTAP

浏览/检索结果: 共20条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
国际研究发现了格陵兰岛冰川迅速融化的原因 快报文章
资源环境快报,2023年第09期
作者:  吴秀平
Microsoft Word(24Kb)  |  收藏  |  浏览/下载:576/0  |  提交时间:2023/05/17
Greenland  glacial  melt  
NOAA发布《2022年北极报告》 快报文章
资源环境快报,2022年第24期
作者:  薛明媚,吴秀平
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:413/0  |  提交时间:2023/01/01
Arctic  Sea Ice  Greenland  
Nature Geoscience:格陵兰冰川融水中汞含量较高 快报文章
资源环境快报,2021年第11期
作者:  薛明媚,吴秀平
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:382/0  |  提交时间:2021/06/17
Greenland Ice Sheet  Mercury  Melting Ice Sheet  
格陵兰冰盖径流量显著增强 快报文章
资源环境快报,2021年第21期
作者:  董利苹
Microsoft Word(13Kb)  |  收藏  |  浏览/下载:683/0  |  提交时间:2021/11/15
Greenland Ice Sheet Runoff  Variability  Satellite Observations  
2100年格陵兰冰盖融化可能导致海平面上升约18cm 快报文章
资源环境快报,2020年第24期
作者:  董利苹
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:471/0  |  提交时间:2020/12/31
Greenland Ice Sheet  Sea Level Rise  CMIP6  Regional Climate Models  
The timing and effect of the earliest human arrivals in North America 期刊论文
NATURE, 2020
作者:  Lorena Becerra-Valdivia;  Thomas Higham
收藏  |  浏览/下载:26/0  |  提交时间:2020/08/09

The peopling of the Americas marks a major expansion of humans across the planet. However, questions regarding the timing and mechanisms of this dispersal remain, and the previously accepted model (termed '  Clovis-first'  )-suggesting that the first inhabitants of the Americas were linked with the Clovis tradition, a complex marked by distinctive fluted lithic points(1)-has been effectively refuted. Here we analyse chronometric data from 42 North American and Beringian archaeological sites using a Bayesian age modelling approach, and use the resulting chronological framework to elucidate spatiotemporal patterns of human dispersal. We then integrate these patterns with the available genetic and climatic evidence. The data obtained show that humans were probably present before, during and immediately after the Last Glacial Maximum (about 26.5-19 thousand years ago)(2,3)but that more widespread occupation began during a period of abrupt warming, Greenland Interstadial 1 (about 14.7-12.9 thousand years beforead 2000)(4). We also identify the near-synchronous commencement of Beringian, Clovis and Western Stemmed cultural traditions, and an overlap of each with the last dates for the appearance of 18 now-extinct faunal genera. Our analysis suggests that the widespread expansion of humans through North America was a key factor in the extinction of large terrestrial mammals.


A Bayesian age model suggests that human dispersal to the Americas probably began before the Last Glacial Maximum, overlapping with the last dates of appearance for several faunal genera.


  
格陵兰冰盖的融水在冬天也会流动 快报文章
资源环境快报,2020年第8期
作者:  李恒吉
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:353/0  |  提交时间:2020/04/30
Greenland  ice sheet  
Algal photophysiology drives darkening and melt of the Greenland Ice Sheet 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (11) : 5694-5705
作者:  Williamson, Christopher J.;  Cook, Joseph;  Tedstone, Andrew;  Yallop, Marian;  McCutcheon, Jenine;  Poniecka, Ewa;  Campbell, Douglas;  Irvine-Fynn, Tristram;  McQuaid, James;  Tranter, Martyn;  Perkins, Rupert;  Anesio, Alexandre
收藏  |  浏览/下载:6/0  |  提交时间:2020/05/13
Greenland Ice Sheet  glacier algae  photophysiology  melt  cryosphere  
Ruthenium isotope vestige of Earth's pre-late-veneer mantle preserved in Archaean rocks 期刊论文
NATURE, 2020, 579 (7798) : 240-+
作者:  Abadie, Valerie;  Kim, Sangman M.;  Lejeune, Thomas;  Palanski, Brad A.;  Ernest, Jordan D.;  Tastet, Olivier;  Voisine, Jordan;  Discepolo, Valentina;  Marietta, Eric, V;  Hawash, Mohamed B. F.;  Ciszewski, Cezary;  Bouziat, Romain;  Panigrahi, Kaushik;  Horwath, Irina;  Zurenski, Matthew A.;  Lawrence, Ian;  Dumaine, Anne;  Yotova, Vania;  Grenier, Jean-Christophe;  Murray, Joseph A.;  Khosla, Chaitan;  Barreiro, Luis B.;  Jabri, Bana
收藏  |  浏览/下载:31/0  |  提交时间:2020/05/13

The accretion of volatile-rich material from the outer Solar System represents a crucial prerequisite for Earth to develop oceans and become a habitable planet(1-4). However, the timing of this accretion remains controversial(5-8). It has been proposed that volatile elements were added to Earth by the late accretion of a late veneer consisting of carbonaceous-chondrite-like material after core formation had ceased(6,9,10). This view could not be reconciled with the ruthenium (Ru) isotope composition of carbonaceous chondrites(5,11), which is distinct from that of the modern mantle(12), or of any known meteorite group(5). As a possible solution, Earth'  s pre-late-veneer mantle could already have contained a fraction of Ru that was not fully extracted by core formation(13). The presence of such pre-late-veneer Ru can only be established if its isotope composition is distinct from that of the modern mantle. Here we report the first high-precision, mass-independent Ru isotope compositions for Eoarchaean ultramafic rocks from southwest Greenland, which display a relative Ru-100 excess of 22 parts per million compared with the modern mantle value. This Ru-100 excess indicates that the source of the Eoarchaean rocks already contained a substantial fraction of Ru before the accretion of the late veneer. By 3.7 billion years ago, the mantle beneath southwest Greenland had not yet fully equilibrated with late accreted material. Otherwise, no Ru isotopic difference relative to the modern mantle would be observed. If constraints from other highly siderophile elements besides Ru are also considered(14), the composition of the modern mantle can only be reconciled if the late veneer contained substantial amounts of carbonaceous-chondrite-like materials with their characteristic Ru-100 deficits. These data therefore relax previous constraints on the late veneer and are consistent with volatile-rich material from the outer Solar System being delivered to Earth during late accretion.


  
Oceanic forcing of penultimate deglacial and last interglacial sea-level rise 期刊论文
NATURE, 2020, 577 (7792) : 660-+
作者:  Rizal, Yan;  Westaway, Kira E.;  Zaim, Yahdi;  van den Bergh, Gerrit D.;  Bettis, E. Arthur, III;  Morwood, Michael J.;  Huffman, O. Frank;  Grun, Rainer;  Joannes-Boyau, Renaud;  Bailey, Richard M.;  Sidarto;  Westaway, Michael C.;  Kurniawan, Iwan;  Moore, Mark W.;  Storey, Michael;  Aziz, Fachroel;  Suminto;  Zhao, Jian-xin;  Aswan;  Sipola, Maija E.;  Larick, Roy;  Zonneveld, John-Paul;  Scott, Robert;  Putt, Shelby;  Ciochon, Russell L.
收藏  |  浏览/下载:21/0  |  提交时间:2020/05/13

Sea-level histories during the two most recent deglacial-interglacial intervals show substantial differences(1-3) despite both periods undergoing similar changes in global mean temperature(4,5) and forcing from greenhouse gases(6). Although the last interglaciation (LIG) experienced stronger boreal summer insolation forcing than the present interglaciation(7), understanding why LIG global mean sea level may have been six to nine metres higher than today has proven particularly challenging(2). Extensive areas of polar ice sheets were grounded below sea level during both glacial and interglacial periods, with grounding lines and fringing ice shelves extending onto continental shelves(8). This suggests that oceanic forcing by subsurface warming may also have contributed to ice-sheet loss(9-12) analogous to ongoing changes in the Antarctic(13,14) and Greenland(15) ice sheets. Such forcing would have been especially effective during glacial periods, when the Atlantic Meridional Overturning Circulation (AMOC) experienced large variations on millennial timescales(16), with a reduction of the AMOC causing subsurface warming throughout much of the Atlantic basin(9,12,17). Here we show that greater subsurface warming induced by the longer period of reduced AMOC during the penultimate deglaciation can explain the more-rapid sea-level rise compared with the last deglaciation. This greater forcing also contributed to excess loss from the Greenland and Antarctic ice sheets during the LIG, causing global mean sea level to rise at least four metres above modern levels. When accounting for the combined influences of penultimate and LIG deglaciation on glacial isostatic adjustment, this excess loss of polar ice during the LIG can explain much of the relative sea level recorded by fossil coral reefs and speleothems at intermediate- and far-field sites.