GSTDTAP

浏览/检索结果: 共14条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
新研究表明板块俯冲入侵在地球演化中发挥关键作用 快报文章
地球科学快报,2024年第5期
作者:  王晓晨
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:614/0  |  提交时间:2024/03/10
subduction zone  Atlantic  
地幔流模式可能取决于板块俯冲类型 快报文章
地球科学快报,2024年第5期
作者:  王晓晨
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:608/0  |  提交时间:2024/03/10
subduction zone  mantle current  
研究证实地表水能够深入地球深部并改变地核的化学组成 快报文章
地球科学快报,2023年第22期
作者:  王晓晨
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:448/0  |  提交时间:2023/11/24
Earth’s core  surface water  subduction  
板块运动可能始于40亿年前 快报文章
地球科学快报,2023年第19期
作者:  王晓晨
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:467/0  |  提交时间:2023/10/10
subduction  plate movement  
科学家首次揭示早期地球深层碳、氯循环机制及其深远影响 快报文章
地球科学快报,2023年第16期
作者:  张树良
Microsoft Word(18Kb)  |  收藏  |  浏览/下载:540/0  |  提交时间:2023/08/26
deep carbon and chlorine cycles  plate subduction  geochemistry  geodynamics  
新数值模型揭示地球板块构造运动的基本过程 快报文章
地球科学快报,2022年第06期
作者:  刘文浩
Microsoft Word(15Kb)  |  收藏  |  浏览/下载:666/0  |  提交时间:2022/03/25
Plate tectonics  Subduction zone  
苏黎世大学研究人员利用新的计算机模型解释构造板块俯冲机制 快报文章
地球科学快报,2021年第23期
作者:  王晓晨
Microsoft Word(17Kb)  |  收藏  |  浏览/下载:631/0  |  提交时间:2021/12/10
Plate subduction  Brittle–ductile damage  
Nature Geoscience:地幔柱导致的板块旋转引发俯冲作用 快报文章
地球科学快报,2021年第14期
作者:  王晓晨
Microsoft Word(51Kb)  |  收藏  |  浏览/下载:439/0  |  提交时间:2021/07/26
Plume  plate rotation  plate subduction  
地幔过渡带存在明显的俯冲板片界面 快报文章
地球科学快报,2020年第22期
作者:  赵纪东
Microsoft Word(14Kb)  |  收藏  |  浏览/下载:394/0  |  提交时间:2020/11/25
Mantle transition zone  Plate  Oceanic subduction  Seismic exploration  
Months-long thousand-kilometre-scale wobbling before great subduction earthquakes 期刊论文
NATURE, 2020, 580 (7805) : 628-+
作者:  Son, Hyungmok;  Park, Juliana J.;  Ketterle, Wolfgang;  Jamison, Alan O.
收藏  |  浏览/下载:16/0  |  提交时间:2020/05/13

Observed reversals in GNSS surface motions suggests greatly enhanced slab pull in the months preceding the great subduction earthquakes in Maule (Chile, 2010) and Tohoku-oki (Japan, 2011) of moment magnitudes 8.8 and 9.0.


Megathrust earthquakes are responsible for some of the most devastating natural disasters(1). To better understand the physical mechanisms of earthquake generation, subduction zones worldwide are continuously monitored with geophysical instrumentation. One key strategy is to install stations that record signals from Global Navigation Satellite Systems(2,3) (GNSS), enabling us to track the non-steady surface motion of the subducting and overriding plates before, during and after the largest events(4-6). Here we use a recently developed trajectory modelling approach(7) that is designed to isolate secular tectonic motions from the daily GNSS time series to show that the 2010 Maule, Chile (moment magnitude 8.8) and 2011 Tohoku-oki, Japan (moment magnitude 9.0) earthquakes were preceded by reversals of 4-8 millimetres in surface displacement that lasted several months and spanned thousands of kilometres. Modelling of the surface displacement reversal that occurred before the Tohoku-oki earthquake suggests an initial slow slip followed by a sudden pulldown of the Philippine Sea slab so rapid that it caused a viscoelastic rebound across the whole of Japan. Therefore, to understand better when large earthquakes are imminent, we must consider not only the evolution of plate interface frictional processes but also the dynamic boundary conditions from deeper subduction processes, such as sudden densification of metastable slab.