GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
研究揭示慢滑事件同板块应变积累与释放的关系 快报文章
地球科学快报,2023年第4期
作者:  王立伟
Microsoft Word(16Kb)  |  收藏  |  浏览/下载:630/0  |  提交时间:2023/02/24
slow slip events  tectonic strain  
Nature Geoscience:慢滑事件源区的物理条件和摩擦性质 快报文章
地球科学快报,2021年第12期
作者:  王晓晨
Microsoft Word(13Kb)  |  收藏  |  浏览/下载:430/0  |  提交时间:2021/06/24
slow-slip event  physical conditions  frictional properties  
Months-long thousand-kilometre-scale wobbling before great subduction earthquakes 期刊论文
NATURE, 2020, 580 (7805) : 628-+
作者:  Son, Hyungmok;  Park, Juliana J.;  Ketterle, Wolfgang;  Jamison, Alan O.
收藏  |  浏览/下载:16/0  |  提交时间:2020/05/13

Observed reversals in GNSS surface motions suggests greatly enhanced slab pull in the months preceding the great subduction earthquakes in Maule (Chile, 2010) and Tohoku-oki (Japan, 2011) of moment magnitudes 8.8 and 9.0.


Megathrust earthquakes are responsible for some of the most devastating natural disasters(1). To better understand the physical mechanisms of earthquake generation, subduction zones worldwide are continuously monitored with geophysical instrumentation. One key strategy is to install stations that record signals from Global Navigation Satellite Systems(2,3) (GNSS), enabling us to track the non-steady surface motion of the subducting and overriding plates before, during and after the largest events(4-6). Here we use a recently developed trajectory modelling approach(7) that is designed to isolate secular tectonic motions from the daily GNSS time series to show that the 2010 Maule, Chile (moment magnitude 8.8) and 2011 Tohoku-oki, Japan (moment magnitude 9.0) earthquakes were preceded by reversals of 4-8 millimetres in surface displacement that lasted several months and spanned thousands of kilometres. Modelling of the surface displacement reversal that occurred before the Tohoku-oki earthquake suggests an initial slow slip followed by a sudden pulldown of the Philippine Sea slab so rapid that it caused a viscoelastic rebound across the whole of Japan. Therefore, to understand better when large earthquakes are imminent, we must consider not only the evolution of plate interface frictional processes but also the dynamic boundary conditions from deeper subduction processes, such as sudden densification of metastable slab.