GSTDTAP

浏览/检索结果: 共192条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Potential for large-scale CO2 removal via enhanced rock weathering with croplands 期刊论文
NATURE, 2020, 583 (7815) : 242-+
作者:  David J. Beerling;  Euripides P. Kantzas;  Mark R. Lomas;  Peter Wade;  Rafael M. Eufrasio;  Phil Renforth;  Binoy Sarkar;  M. Grace Andrews;  Rachael H. James;  Christopher R. Pearce;  Jean-Francois Mercure;  Hector Pollitt;  Philip B. Holden;  Neil R. Edwards;  Madhu Khanna;  Lenny Koh;  Shaun Quegan;  Nick F. Pidgeon;  Ivan A. Janssens;  James Hansen;  Steven A. Banwart
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/14

Enhanced silicate rock weathering (ERW), deployable with croplands, has potential use for atmospheric carbon dioxide (CO2) removal (CDR), which is now necessary to mitigate anthropogenic climate change(1). ERW also has possible co-benefits for improved food and soil security, and reduced ocean acidification(2-4). Here we use an integrated performance modelling approach to make an initial techno-economic assessment for 2050, quantifying how CDR potential and costs vary among nations in relation to business-as-usual energy policies and policies consistent with limiting future warming to 2 degrees Celsius(5). China, India, the USA and Brazil have great potential to help achieve average global CDR goals of 0.5 to 2gigatonnes of carbon dioxide (CO2) per year with extraction costs of approximately US$80-180 per tonne of CO2. These goals and costs are robust, regardless of future energy policies. Deployment within existing croplands offers opportunities to align agriculture and climate policy. However, success will depend upon overcoming political and social inertia to develop regulatory and incentive frameworks. We discuss the challenges and opportunities of ERW deployment, including the potential for excess industrial silicate materials (basalt mine overburden, concrete, and iron and steel slag) to obviate the need for new mining, as well as uncertainties in soil weathering rates and land-ocean transfer of weathered products.


  
Abrupt increase in harvested forest area over Europe after 2015 期刊论文
NATURE, 2020, 583 (7814) : 72-+
作者:  Guido Ceccherini;  Gregory Duveiller;  Giacomo Grassi;  Guido Lemoine;  Valerio Avitabile;  Roberto Pilli;  Alessandro Cescatti
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/06

Fine-scale satellite data are used to quantify forest harvest rates in 26 European countries, finding an increase in harvested forest area of 49% and an increase in biomass loss of 69% between 2011-2015 and 2016-2018.


Forests provide a series of ecosystem services that are crucial to our society. In the European Union (EU), forests account for approximately 38% of the total land surface(1). These forests are important carbon sinks, and their conservation efforts are vital for the EU'  s vision of achieving climate neutrality by 2050(2). However, the increasing demand for forest services and products, driven by the bioeconomy, poses challenges for sustainable forest management. Here we use fine-scale satellite data to observe an increase in the harvested forest area (49 per cent) and an increase in biomass loss (69 per cent) over Europe for the period of 2016-2018 relative to 2011-2015, with large losses occurring on the Iberian Peninsula and in the Nordic and Baltic countries. Satellite imagery further reveals that the average patch size of harvested area increased by 34 per cent across Europe, with potential effects on biodiversity, soil erosion and water regulation. The increase in the rate of forest harvest is the result of the recent expansion of wood markets, as suggested by econometric indicators on forestry, wood-based bioenergy and international trade. If such a high rate of forest harvest continues, the post-2020 EU vision of forest-based climate mitigation may be hampered, and the additional carbon losses from forests would require extra emission reductions in other sectors in order to reach climate neutrality by 2050(3).


  
Millennial-scale hydroclimate control of tropical soil carbon storage 期刊论文
NATURE, 2020, 581 (7806) : 63-+
作者:  Lam, Tommy Tsan-Yuk;  Jia, Na;  Zhang, Ya-Wei;  Shum, Marcus Ho-Hin;  Jiang, Jia-Fu;  Zhu, Hua-Chen;  Tong, Yi-Gang;  Shi, Yong-Xia;  Ni, Xue-Bing;  Liao, Yun-Shi;  Li, Wen-Juan;  Jiang, Bao-Gui;  Wei, Wei;  Yuan, Ting-Ting;  Zheng, Kui;  Cui, Xiao-Ming;  Li, Jie;  Pei, Guang-Qian
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Over the past 18,000 years, the residence time and amount of soil carbon stored in the Ganges-Brahmaputra basin have been controlled by the intensity of Indian Summer Monsoon rainfall, with greater carbon destabilization during wetter, warmer conditions.


The storage of organic carbon in the terrestrial biosphere directly affects atmospheric concentrations of carbon dioxide over a wide range of timescales. Within the terrestrial biosphere, the magnitude of carbon storage can vary in response to environmental perturbations such as changing temperature or hydroclimate(1), potentially generating feedback on the atmospheric inventory of carbon dioxide. Although temperature controls the storage of soil organic carbon at mid and high latitudes(2,3), hydroclimate may be the dominant driver of soil carbon persistence in the tropics(4,5)  however, the sensitivity of tropical soil carbon turnover to large-scale hydroclimate variability remains poorly understood. Here we show that changes in Indian Summer Monsoon rainfall have controlled the residence time of soil carbon in the Ganges-Brahmaputra basin over the past 18,000 years. Comparison of radiocarbon ages of bulk organic carbon and terrestrial higher-plant biomarkers with co-located palaeohydrological records(6) reveals a negative relationship between monsoon rainfall and soil organic carbon stocks on a millennial timescale. Across the deglaciation period, a depletion of basin-wide soil carbon stocks was triggered by increasing rainfall and associated enhanced soil respiration rates. Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilization, further increasing atmospheric carbon dioxide concentrations.


  
The fate of carbon in a mature forest under carbon dioxide enrichment 期刊论文
NATURE, 2020, 580 (7802) : 227-+
作者:  Sun, P. Z.;  Yang, Q.;  Kuang, W. J.;  Stebunov, Y. V.;  Xiong, W. Q.;  Yu, J.;  Nair, R. R.;  Katsnelson, M. I.;  Yuan, S. J.;  Grigorieva, I. V.;  Lozada-Hidalgo, M.;  Wang, F. C.;  Geim, A. K.
收藏  |  浏览/下载:70/0  |  提交时间:2020/05/13

Carbon dioxide enrichment of a mature forest resulted in the emission of the excess carbon back into the atmosphere via enhanced ecosystem respiration, suggesting that mature forests may be limited in their capacity to mitigate climate change.


Atmospheric carbon dioxide enrichment (eCO(2)) can enhance plant carbon uptake and growth(1-5), thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration(6). Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth(3-5), it is unclear whether mature forests respond to eCO(2) in a similar way. In mature trees and forest stands(7-10), photosynthetic uptake has been found to increase under eCO(2) without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO(2) unclear(4,5,7-11). Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO(2) exposure. We show that, although the eCO(2) treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO(2), and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


  
Focus on the role of forests and soils in meeting climate change mitigation goals: summary 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (4)
作者:  Moomaw, William R.;  Law, Beverly E.;  Goetz, Scott J.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/02
natural climate solutions  forest and soil carbon  tropical forests  carbon sequestration  forest products carbon storage  forest carbon accounting  forest bioenergy accounting  
Sifting through the weeds: Understanding heterogeneity in fertilizer and labor response in Central Malawi 期刊论文
ECOLOGICAL ECONOMICS, 2020, 169
作者:  Kopper, Sarah A.;  Jayne, Thomas S.;  Snapp, Sieglinde S.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
Fertilizer Profitability  Weeding Labor  Maize Production  Soil Organic Carbon  
Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (2)
作者:  Huntzinger, D. N.;  Schaefer, K.;  Schwalm, C.;  Fisher, J. B.;  Hayes, D.;  Stofferahn, E.;  Carey, J.;  Michalak, A. M.;  Wei, Y.;  Jain, A. K.;  Kolus, H.;  Mao, J.;  Poulter, B.;  Shi, X.;  Tang, J.;  Tian, H.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
soil carbon  Arctic-Boreal  terrestrial carbon cycle  soil respiration  functional benchmark  
Impacts of tillage practices on soil carbon stocks in the US corn-soybean cropping system during 1998 to 2016 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (1)
作者:  Yu, Zhen;  Lu, Chaoqun;  Hennessy, David A.;  Feng, Hongli;  Tian, Hanqin
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
conterminous US  tillage  carbon storage  soil organic carbon  soil erosion  
Dark microbial CO2 fixation in temperate forest soils increases with CO2 concentration 期刊论文
GLOBAL CHANGE BIOLOGY, 2019
作者:  Spohn, Marie;  Mueller, Karolin;  Hoeschen, Carmen;  Mueller, Carsten W.;  Marhan, Sven
收藏  |  浏览/下载:23/0  |  提交时间:2020/02/17
anaplerotic reactions  carbon cycle  chemoautotrophic bacteria  CO2 concentration  dark microbial CO2 fixation  fungal-bacterial interactions  microbial carbon pump  microbial soil carbon processing  soil organic matter formation  
Arctic Soil Governs Whether Climate Change Drives Global Losses or Gains in Soil Carbon 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2019
作者:  Wieder, William R.;  Sulman, Benjamin N.;  Hartman, Melannic D.;  Koven, Charles D.;  Bradford, Mark A.
收藏  |  浏览/下载:11/0  |  提交时间:2020/02/17
soil carbon  biogeochemistry  models  microbial explicit  carbon cycle  Arctic