GSTDTAP

浏览/检索结果: 共284条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Retrospect driving forces and forecasting reduction potentials of energy-related industrial carbon emissions from China's manufacturing at city level 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (7)
作者:  Su, Yongxian;  Wang, Yilong;  Zheng, Bo;  Ciais, Philippe;  Wu, Jianping;  Chen, Xiuzhi;  Wang, Yang;  Wang, Changjian;  Ye, Yuyao;  Li, Qian;  Zhang, Chaoqun;  Zhang, Hongou;  Huang, Guangqing;  Huang, Ningsheng;  Lafortezza, Raffaele
收藏  |  浏览/下载:13/0  |  提交时间:2020/08/18
carbon emission mitigation  city level  manufacturing  scenario design  carbon emission driver  mitigation strategy  
Abrupt increase in harvested forest area over Europe after 2015 期刊论文
NATURE, 2020, 583 (7814) : 72-+
作者:  Guido Ceccherini;  Gregory Duveiller;  Giacomo Grassi;  Guido Lemoine;  Valerio Avitabile;  Roberto Pilli;  Alessandro Cescatti
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/06

Fine-scale satellite data are used to quantify forest harvest rates in 26 European countries, finding an increase in harvested forest area of 49% and an increase in biomass loss of 69% between 2011-2015 and 2016-2018.


Forests provide a series of ecosystem services that are crucial to our society. In the European Union (EU), forests account for approximately 38% of the total land surface(1). These forests are important carbon sinks, and their conservation efforts are vital for the EU'  s vision of achieving climate neutrality by 2050(2). However, the increasing demand for forest services and products, driven by the bioeconomy, poses challenges for sustainable forest management. Here we use fine-scale satellite data to observe an increase in the harvested forest area (49 per cent) and an increase in biomass loss (69 per cent) over Europe for the period of 2016-2018 relative to 2011-2015, with large losses occurring on the Iberian Peninsula and in the Nordic and Baltic countries. Satellite imagery further reveals that the average patch size of harvested area increased by 34 per cent across Europe, with potential effects on biodiversity, soil erosion and water regulation. The increase in the rate of forest harvest is the result of the recent expansion of wood markets, as suggested by econometric indicators on forestry, wood-based bioenergy and international trade. If such a high rate of forest harvest continues, the post-2020 EU vision of forest-based climate mitigation may be hampered, and the additional carbon losses from forests would require extra emission reductions in other sectors in order to reach climate neutrality by 2050(3).


  
A population of dust-enshrouded objects orbiting the Galactic black hole 期刊论文
NATURE, 2020, 577 (7790) : 337-+
作者:  Witze, Alexandra
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

The central 0.1 parsecs of the Milky Way host a supermassive black hole identified with the position of the radio and infrared source Sagittarius A* (refs.(1,2)), a cluster of young, massive stars (the S stars3) and various gaseous features(4,5). Recently, two unusual objects have been found to be closely orbiting Sagittarius A*: the so-called G sources, G1 and G2. These objects are unresolved (having a size of the order of 100 astronomical units, except at periapse, where the tidal interaction with the black hole stretches them along the orbit) and they show both thermal dust emission and line emission from ionized gas(6-10). G1 and G2 have generated attention because they appear to be tidally interacting with the supermassive Galactic black hole, possibly enhancing its accretion activity. No broad consensus has yet been reached concerning their nature: the G objects show the characteristics of gas and dust clouds but display the dynamical properties of stellar-mass objects. Here we report observations of four additional G objects, all lying within 0.04 parsecs of the black hole and forming a class that is probably unique to this environment. The widely varying orbits derived for the six G objects demonstrate that they were commonly but separately formed.


  
Puzzling Haze Events in China During the Coronavirus (COVID-19) Shutdown 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Chang, Yunhua;  Huang, Ru-Jin;  Ge, Xinlei;  Huang, Xiangpeng;  Hu, Jianlin;  Duan, Yusen;  Zou, Zhong;  Liu, Xuejun;  Lehmann, Moritz F.
收藏  |  浏览/下载:25/0  |  提交时间:2020/06/16
haze  fine particle  novel coronavirus  COVID-19  emission reduction  
Rising methane emissions from boreal lakes due to increasing ice-free days 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (6)
作者:  Guo, Mingyang;  Zhuang, Qianlai;  Tan, Zeli;  Shurpali, Narasinha;  Juutinen, Sari;  Kortelainen, Pirkko;  Martikainen, Pertti J.
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/02
methane emission  boreal lake  climate change  
Spatial Variation of Reactive Nitrogen Emissions From China's Croplands Codetermined by Regional Urbanization and Its Feedback to Global Climate Change 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Xu, Peng;  Chen, Anping;  Houlton, Benjamin Z.;  Zeng, Zhenzhong;  Wei, Song;  Zhao, Chenxu;  Lu, Haiyan;  Liao, Yajun;  Zheng, Zhonghua;  Luan, Shengji;  Zheng, Yi
收藏  |  浏览/下载:15/0  |  提交时间:2020/06/01
reactive gaseous nitrogen  agricultural soils  emission inventory  urbanization  climate change impacts  
Efficient Carbon Recycling at the Central-Northern Lesser Antilles Arc: Implications to Deep Carbon Recycling in Global Subduction Zones 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (9)
作者:  Li, Kan;  Li, Long;  Aubaud, Cyril;  Muehlenbachs, Karlis
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
Lesser Antilles  volcanic emission  subduction  efficient carbon recycling  
Emission characteristics of biogenic volatile organic compounds from representative plant species of the Korean peninsula - Focused on aldehydes 期刊论文
ATMOSPHERIC RESEARCH, 2020, 236
作者:  Kim, So-Young;  Kim, Jo-Chun;  Park, Chan-Ryul;  Son, Youn-Suk
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Biogenic volatile organic compounds  Emission rate  Aldehyde  Monoterpene  Isoprene  
Ammonia emission abatement does not fully control reduced forms of nitrogen deposition 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (18) : 9771-9775
作者:  Tan, Jiani;  Fu, Joshua S.;  Seinfeld, John H.
收藏  |  浏览/下载:17/0  |  提交时间:2020/05/13
nitrogen deposition  reduced forms of nitrogen  ammonia emission  emission control strategy  
A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang 期刊论文
NATURE, 2020, 581 (7808) : 269-+
作者:  Poplawski, Gunnar H. D.;  Kawaguchi, Riki;  Van Niekerk, Erna;  Lu, Paul;  Mehta, Neil;  Canete, Philip;  Lie, Richard;  Dragatsis, Ioannis;  Meves, Jessica M.;  Zheng, Binhai;  Coppola, Giovanni;  Tuszynski, Mark H.
收藏  |  浏览/下载:60/0  |  提交时间:2020/07/03

Massive disk galaxies like the Milky Way are expected to form at late times in traditional models of galaxy formation(1,2), but recent numerical simulations suggest that such galaxies could form as early as a billion years after the Big Bang through the accretion of cold material and mergers(3,4). Observationally, it has been difficult to identify disk galaxies in emission at high redshift(5,6) in order to discern between competing models of galaxy formation. Here we report imaging, with a resolution of about 1.3 kiloparsecs, of the 158-micrometre emission line from singly ionized carbon, the far-infrared dust continuum and the near-ultraviolet continuum emission from a galaxy at a redshift of 4.2603, identified by detecting its absorption of quasar light. These observations show that the emission arises from gas inside a cold, dusty, rotating disk with a rotational velocity of about 272 kilometres per second. The detection of emission from carbon monoxide in the galaxy yields a molecular mass that is consistent with the estimate from the ionized carbon emission of about 72 billion solar masses. The existence of such a massive, rotationally supported, cold disk galaxy when the Universe was only 1.5 billion years old favours formation through either cold-mode accretion or mergers, although its large rotational velocity and large content of cold gas remain challenging to reproduce with most numerical simulations(7,8).


A massive rotating disk galaxy was formed a mere 1.5 billion years after the Big Bang, a surprisingly short time after the origin of the Universe.