GSTDTAP

浏览/检索结果: 共3条,第1-3条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Lipid Biomarker Record Documents Hydroclimatic Variability of the Mississippi River Basin During the Common Era 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Munoz, Samuel E.;  Porter, Trevor J.;  Bakkelund, Aleesha;  Nusbaumer, Jesse;  Dee, Sylvia G.;  Hamilton, Brynnydd;  Giosan, Liviu;  Tierney, Jessica E.
收藏  |  浏览/下载:11/0  |  提交时间:2020/06/01
lipid biomarker  leaf wax  brGDGT  Common Era  paleoclimate  hydroclimate  
APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline 期刊论文
NATURE, 2020, 581 (7806) : 70-+
作者:  Doherty, Tiarnan A. S.;  Winchester, Andrew J.;  Macpherson, Stuart;  Johnstone, Duncan N.;  Pareek, Vivek;  Tennyson, Elizabeth M.;  Kosar, Sofiia;  Kosasih, Felix U.;  Anaya, Miguel;  Abdi-Jalebi, Mojtaba;  Andaji-Garmaroudi, Zahra;  Wong, E. Laine;  Madeo, Julien;  Chiang, Yu-Hsien;  Park, Ji-Sang;  Jung, Young-Kwang;  Petoukhoff, Christopher E.;  Divitini, Giorgio;  Man, Michael K. L.;  Ducati, Caterina;  Walsh, Aron;  Midgley, Paul A.;  Dani, Keshav M.;  Stranks, Samuel D.
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

Breakdown of the blood-brain barrier in individuals carrying the epsilon 4 allele of the APOE gene, but not the epsilon 3 allele, increases with and predicts cognitive impairment and is independent of amyloid beta or tau pathology.


Vascular contributions to dementia and Alzheimer'  s disease are increasingly recognized(1-6). Recent studies have suggested that breakdown of the blood-brain barrier (BBB) is an early biomarker of human cognitive dysfunction(7), including the early clinical stages of Alzheimer'  s disease(5,8-10). The E4 variant of apolipoprotein E (APOE4), the main susceptibility gene for Alzheimer'  s disease(11-14), leads to accelerated breakdown of the BBB and degeneration of brain capillary pericytes(15-19), which maintain BBB integrity(20-22). It is unclear, however, whether the cerebrovascular effects of APOE4 contribute to cognitive impairment. Here we show that individuals bearing APOE4 (with the epsilon 3/epsilon 4 or epsilon 4/epsilon 4 alleles) are distinguished from those without APOE4 (epsilon 3/epsilon 3) by breakdown of the BBB in the hippocampus and medial temporal lobe. This finding is apparent in cognitively unimpaired APOE4 carriers and more severe in those with cognitive impairment, but is not related to amyloid-beta or tau pathology measured in cerebrospinal fluid or by positron emission tomography(23). High baseline levels of the BBB pericyte injury biomarker soluble PDGFR beta(7,8) in the cerebrospinal fluid predicted future cognitive decline in APOE4 carriers but not in non-carriers, even after controlling for amyloid-beta and tau status, and were correlated with increased activity of the BBB-degrading cyclophilin A-matrix metalloproteinase-9 pathway(19) in cerebrospinal fluid. Our findings suggest that breakdown of the BBB contributes to APOE4-associated cognitive decline independently of Alzheimer'  s disease pathology, and might be a therapeutic target in APOE4 carriers.


  
Olfactory sniffing signals consciousness in unresponsive patients with brain injuries 期刊论文
NATURE, 2020
作者:  Hellmuth, Susanne;  Gomez-H, Laura;  Pendas, Alberto M.;  Stemmann, Olaf
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

After severe brain injury, it can be difficult to determine the state of consciousness of a patient, to determine whether the patient is unresponsive or perhaps minimally conscious(1), and to predict whether they will recover. These diagnoses and prognoses are crucial, as they determine therapeutic strategies such as pain management, and can underlie end-of-life decisions(2,3). Nevertheless, there is an error rate of up to 40% in determining the state of consciousness in patients with brain injuries(4,5). Olfaction relies on brain structures that are involved in the basic mechanisms of arousal(6), and we therefore hypothesized that it may serve as a biomarker for consciousness(7). Here we use a non-verbal non-task-dependent measure known as the sniff response(8-11) to determine consciousness in patients with brain injuries. By measuring odorant-dependent sniffing, we gain a sensitive measure of olfactory function(10-15). We measured the sniff response repeatedly over time in patients with severe brain injuries and found that sniff responses significantly discriminated between unresponsive and minimally conscious states at the group level. Notably, at the single-patient level, if an unresponsive patient had a sniff response, this assured future regaining of consciousness. In addition, olfactory sniff responses were associated with long-term survival rates. These results highlight the importance of olfaction in human brain function, and provide an accessible tool that signals consciousness and recovery in patients with brain injuries.


Odorant-dependent sniff responses predicted the long-term survival rates of patients with severe brain injury, and discriminated between individuals who were unresponsive and in minimally conscious states.