GSTDTAP

浏览/检索结果: 共373条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Tree growth at the end of the 21st century-the extreme years 2018/19 as template for future growth conditions 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (7)
作者:  Scharnweber, Tobias;  Smiljanic, Marko;  Cruz-Garcia, Roberto;  Manthey, Michael;  Wilmking, Martin
收藏  |  浏览/下载:13/0  |  提交时间:2020/08/18
drought  tree-growth  forests  dendrometer  
A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (6)
作者:  Haberl, Helmut;  Wiedenhofer, Dominik;  Virag, Doris;  Kalt, Gerald;  Plank, Barbara;  Brockway, Paul;  Fishman, Tomer;  Hausknost, Daniel;  Krausmann, Fridolin;  Leon-Gruchalski, Bartholomaeus;  Mayer, Andreas;  Pichler, Melanie;  Schaffartzik, Anke;  Sousa, Tania;  Streeck, Jan;  Creutzig, Felix
收藏  |  浏览/下载:10/0  |  提交时间:2020/08/18
decoupling  economic growth  degrowth  material flow  energy  exergy  GHG emissions  
Shifting economic activity to services has limited potential to reduce global environmental impacts due to the household consumption of labour 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (6)
作者:  Greenford, D. Horen;  Crownshaw, T.;  Lesk, C.;  Stadler, K.;  Matthews, H. D.
收藏  |  浏览/下载:9/0  |  提交时间:2020/08/18
input-output  sustainable development  green growth  decoupling  climate impacts  land use  water consumption  
A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part I: bibliometric and conceptual mapping 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (6)
作者:  Wiedenhofer, Dominik;  Virag, Doris;  Kalt, Gerald;  Plank, Barbara;  Streeck, Jan;  Pichler, Melanie;  Mayer, Andreas;  Krausmann, Fridolin;  Brockway, Paul;  Schaffartzik, Anke;  Fishman, Tomer;  Hausknost, Daniel;  Leon-Gruchalski, Bartholomaeus;  Sousa, Tania;  Creutzig, Felix;  Haberl, Helmut
收藏  |  浏览/下载:13/0  |  提交时间:2020/08/18
decoupling  green growth  degrowth  Environmental Kuznets Curve  dematerialization  decarbonization  socio-economic metabolism  
Strain engineering and epitaxial stabilization of halide perovskites 期刊论文
NATURE, 2020, 577 (7789) : 209-+
作者:  Chen, Yimu;  Lei, Yusheng;  Li, Yuheng;  Yu, Yugang;  Cai, Jinze;  Chiu, Ming-Hui;  Rao, Rahul;  Gu, Yue;  Wang, Chunfeng;  Choi, Woojin;  Hu, Hongjie;  Wang, Chonghe;  Li, Yang;  Song, Jiawei;  Zhang, Jingxin;  Qi, Baiyan;  Lin, Muyang;  Zhang, Zhuorui;  Islam, Ahmad E.;  Maruyama, Benji;  Dayeh, Shadi;  Li, Lain-Jong;  Yang, Kesong;  Lo, Yu-Hwa;  Xu, Sheng
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

Strain engineering is a powerful tool with which to enhance semiconductor device performance(1,2). Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties(3-5). Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization(6-8), electrostriction(9), annealing(10-12), van der Waals force(13), thermal expansion mismatch(14), and heat-induced substrate phase transition(15), the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of a-formamidinium lead iodide (alpha-FAPbI(3)) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial alpha-FAPbI(3) thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of alpha-FAPbI(3). Strained epitaxy is also shown to have a substantial stabilization effect on the alpha-FAPbI(3) phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an alpha-FAPbI(3)-based photodetector.


  
Proton-assisted growth of ultra-flat graphene films 期刊论文
NATURE, 2020, 577 (7789) : 204-+
作者:  Yuan, Guowen;  Lin, Dongjing;  Wang, Yong;  Huang, Xianlei;  Chen, Wang;  Xie, Xuedong;  Zong, Junyu;  Yuan, Qian-Qian;  Zheng, Hang;  Wang, Di;  Xu, Jie;  Li, Shao-Chun;  Zhang, Yi;  Sun, Jian;  Xi, Xiaoxiang;  Gao, Libo
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Graphene films grown by chemical vapour deposition have unusual physical and chemical properties that offer promise for applications such as flexible electronics and high-frequency transistors(1-10). However, wrinkles invariably form during growth because of the strong coupling to the substrate, and these limit the large-scale homogeneity of the film(1-4,11,12). Here we develop a proton-assisted method of chemical vapour deposition to grow ultra-flat graphene films that are wrinkle-free. Our method of proton penetration(13-17) and recombination to form hydrogen can also reduce the wrinkles formed during traditional chemical vapour deposition of graphene. Some of the wrinkles disappear entirely, owing to the decoupling of van der Waals interactions and possibly an increase in distance from the growth surface. The electronic band structure of the as-grown graphene films shows a V-shaped Dirac cone and a linear dispersion relation within the atomic plane or across an atomic step, confirming the decoupling from the substrate. The ultra-flat nature of the graphene films ensures that their surfaces are easy to clean after a wet transfer process. A robust quantum Hall effect appears even at room temperature in a device with a linewidth of 100 micrometres. Graphene films grown by proton-assisted chemical vapour deposition should largely retain their intrinsic performance, and our method should be easily generalizable to other nanomaterials for strain and doping engineering.


  
Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition 期刊论文
NATURE, 2020, 577 (7790) : 421-+
作者:  Xue, Jenny Y.;  Zhao, Yulei;  Aronowitz, Jordan;  Mai, Trang T.;  Vides, Alberto;  Qeriqi, Besnik;  Kim, Dongsung;  Li, Chuanchuan;  de Stanchina, Elisa;  Mazutis, Linas;  Risso, Davide;  Lito, Piro
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

KRAS GTPases are activated in one-third of cancers, and KRAS(G12C) is one of the most common activating alterations in lung adenocarcinoma(1,2). KRAS(G12C) inhibitors(3,4) are in phase-I clinical trials and early data show partial responses in nearly half of patients with lung cancer. How cancer cells bypass inhibition to prevent maximal response to therapy is not understood. Because KRAS(G12C) cycles between an active and inactive conformation(4-6), and the inhibitors bind only to the latter, we tested whether isogenic cell populations respond in a non-uniform manner by studying the effect of treatment at a single-cell resolution. Here we report that, shortly after treatment, some cancer cells are sequestered in a quiescent state with low KRAS activity, whereas others bypass this effect to resume proliferation. This rapid divergent response occurs because some quiescent cells produce new KRAS(G12C) in response to suppressed mitogen-activated protein kinase output. New KRAS(G12C) is maintained in its active, drug-insensitive state by epidermal growth factor receptor and aurora kinase signalling. Cells without these adaptive changes-or cells in which these changes are pharmacologically inhibited-remain sensitive to drug treatment, because new KRAS(G12C) is either not available or exists in its inactive, drug-sensitive state. The direct targeting of KRAS oncoproteins has been a longstanding objective in precision oncology. Our study uncovers a flexible non-uniform fitness mechanism that enables groups of cells within a population to rapidly bypass the effect of treatment. This adaptive process must be overcome if we are to achieve complete and durable responses in the clinic.


  
Controls of Spring Persistence Barrier Strength in Different ENSO Regimes and Implications for 21st Century Changes 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (11)
作者:  Jin, Yishuai;  Lu, Zhengyao;  Liu, Zhengyu
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/25
ENSO growth rate  seasonal persistence barrier strength  Bjerknes stability index  thermodynamic damping  thermocline  
Warming-induced unprecedented high-elevation forest growth over the monsoonal Tibetan Plateau 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (5)
作者:  Shi, Chunming;  Schneider, Lea;  Hu, Yuan;  Shen, Miaogen;  Sun, Cheng;  Xia, Jianyang;  Forbes, Bruce C.;  Shi, Peili;  Zhang, Yuandong;  Ciais, Philippe
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
Tibetan Plateau  high-elevation forest  growth  drought stress  warming  
Metabolic heterogeneity confers differences in melanoma metastatic potential 期刊论文
NATURE, 2020, 577 (7788) : 115-+
作者:  Tasdogan, Alpaslan;  Faubert, Brandon;  Ramesh, Vijayashree;  Ubellacker, Jessalyn M.;  Shen, Bo;  Solmonson, Ashley;  Murphy, Malea M.;  Gu, Zhimin;  Gu, Wen;  Martin, Misty;  Kasitinon, Stacy Y.;  Vandergriff, Travis;  Mathews, Thomas P.;  Zhao, Zhiyu;  Schadendorf, Dirk;  DeBerardinis, Ralph J.;  Morrison, Sean J.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Metastasis requires cancer cells to undergo metabolic changes that are poorly understood(1-3). Here we show that metabolic differences among melanoma cells confer differences in metastatic potential as a result of differences in the function of the MCT1 transporter. In vivo isotope tracing analysis in patient-derived xenografts revealed differences in nutrient handling between efficiently and inefficiently metastasizing melanomas, with circulating lactate being a more prominent source of tumour lactate in efficient metastasizers. Efficient metastasizers had higher levels of MCT1, and inhibition of MCT1 reduced lactate uptake. MCT1 inhibition had little effect on the growth of primary subcutaneous tumours, but resulted in depletion of circulating melanoma cells and reduced the metastatic disease burden in patient-derived xenografts and in mouse melanomas. In addition, inhibition of MCT1 suppressed the oxidative pentose phosphate pathway and increased levels of reactive oxygen species. Antioxidants blocked the effects of MCT1 inhibition on metastasis. MCT1(high) and MCT1(-/low) cells from the same melanomas had similar capacities to form subcutaneous tumours, but MCT1(high) cells formed more metastases after intravenous injection. Metabolic differences among cancer cells thus confer differences in metastatic potential as metastasizing cells depend on MCT1 to manage oxidative stress.