GSTDTAP

浏览/检索结果: 共32条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
Breaking Down the Computational Barriers to Real-Time Urban Flood Forecasting 期刊论文
Geophysical Research Letters, 2021
作者:  Valeriy Y. Ivanov;  Donghui Xu;  M. Chase Dwelle;  Khachik Sargsyan;  Daniel B. Wright;  Nikolaos Katopodes;  Jongho Kim;  Vinh Ngoc Tran;  April Warnock;  Simone Fatichi;  Paolo Burlando;  Enrica Caporali;  Pedro Restrepo;  Brett F. Sanders;  Molly M. Chaney;  Ana M. B. Nunes;  Fernando Nardi;  Enrique R. Vivoni;  Erkan Istanbulluoglu;  Gautam Bisht;  Rafael L. Bras
收藏  |  浏览/下载:18/0  |  提交时间:2021/10/07
Programmable hyperbolic polaritons in van der Waals semiconductors 期刊论文
Science, 2021
作者:  A. J. Sternbach;  S. H. Chae;  S. Latini;  A. A. Rikhter;  Y. Shao;  B. Li;  D. Rhodes;  B. Kim;  P. J. Schuck;  X. Xu;  X.-Y. Zhu;  R. D. Averitt;  J. Hone;  M. M. Fogler;  A. Rubio;  D. N. Basov
收藏  |  浏览/下载:12/0  |  提交时间:2021/02/17
Changing Spatial Structure of Summer Heavy Rainfall, Using Convection‐Permitting Ensemble 期刊论文
Geophysical Research Letters, 2020
作者:  Y. Chen;  A. Paschalis;  E. Kendon;  D. Kim;  C. Onof
收藏  |  浏览/下载:5/0  |  提交时间:2020/12/22
Proton transport enabled by a field-induced metallic state in a semiconductor heterostructure 期刊论文
Science, 2020
作者:  Y. Wu;  B. Zhu;  M. Huang;  L. Liu;  Q. Shi;  M. Akbar;  C. Chen;  J. Wei;  J. F. Li;  L. R. Zheng;  J. S. Kim;  H. B. Song
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/14
Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells 期刊论文
Science, 2020
作者:  Lei Shi;  Martin P. Bucknall;  Trevor L. Young;  Meng Zhang;  Long Hu;  Jueming Bing;  Da Seul Lee;  Jincheol Kim;  Tom Wu;  Noboru Takamure;  David R. McKenzie;  Shujuan Huang;  Martin A. Green;  Anita W. Y. Ho-Baillie
收藏  |  浏览/下载:7/0  |  提交时间:2020/06/22
Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition 期刊论文
NATURE, 2020, 577 (7790) : 421-+
作者:  Xue, Jenny Y.;  Zhao, Yulei;  Aronowitz, Jordan;  Mai, Trang T.;  Vides, Alberto;  Qeriqi, Besnik;  Kim, Dongsung;  Li, Chuanchuan;  de Stanchina, Elisa;  Mazutis, Linas;  Risso, Davide;  Lito, Piro
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

KRAS GTPases are activated in one-third of cancers, and KRAS(G12C) is one of the most common activating alterations in lung adenocarcinoma(1,2). KRAS(G12C) inhibitors(3,4) are in phase-I clinical trials and early data show partial responses in nearly half of patients with lung cancer. How cancer cells bypass inhibition to prevent maximal response to therapy is not understood. Because KRAS(G12C) cycles between an active and inactive conformation(4-6), and the inhibitors bind only to the latter, we tested whether isogenic cell populations respond in a non-uniform manner by studying the effect of treatment at a single-cell resolution. Here we report that, shortly after treatment, some cancer cells are sequestered in a quiescent state with low KRAS activity, whereas others bypass this effect to resume proliferation. This rapid divergent response occurs because some quiescent cells produce new KRAS(G12C) in response to suppressed mitogen-activated protein kinase output. New KRAS(G12C) is maintained in its active, drug-insensitive state by epidermal growth factor receptor and aurora kinase signalling. Cells without these adaptive changes-or cells in which these changes are pharmacologically inhibited-remain sensitive to drug treatment, because new KRAS(G12C) is either not available or exists in its inactive, drug-sensitive state. The direct targeting of KRAS oncoproteins has been a longstanding objective in precision oncology. Our study uncovers a flexible non-uniform fitness mechanism that enables groups of cells within a population to rapidly bypass the effect of treatment. This adaptive process must be overcome if we are to achieve complete and durable responses in the clinic.


  
Institutional arrangements and airport solar PV 期刊论文
Energy Policy, 2020
作者:  Serena Y. Kim
收藏  |  浏览/下载:3/0  |  提交时间:2020/05/13
Country-specific dietary shifts to mitigate climate and water crises 期刊论文
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2020, 62
作者:  Kim, Brent F.;  Santo, Raychel E.;  Scatterday, Allysan P.;  Fry, Jillian P.;  Synk, Colleen M.;  Cebron, Shannon R.;  Mekonnen, Mesfin M.;  Hoekstra, Arjen Y.;  de Pee, Saskia;  Bloem, Martin W.;  Neff, Roni A.;  Nachman, Keeve E.
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/02
Sustainable diet  Dietary change  Nutrition  Food systems  Greenhouse gas emissions  Water footprint  
Observation of Bose-Einstein condensates in an Earth-orbiting research lab 期刊论文
NATURE, 2020, 582 (7811) : 103-+
作者:  Yamamoto, Keisuke;  Venida, Anthony;  Yano, Julian;  Biancur, Douglas E.;  Kakiuchi, Miwako;  Gupta, Suprit;  Sohn, Albert S. W.;  Mukhopadhyay, Subhadip;  Lin, Elaine Y.;  Parker, Seth J.;  Banh, Robert S.;  Paulo, Joao A.;  Wen, Kwun Wah;  Debnath, Jayanta;  Kim, Grace E.;  Mancias, Joseph D.;  Fearon, Douglas T.;  Perera, Rushika M.;  Kimmelman, Alec C.
收藏  |  浏览/下载:25/0  |  提交时间:2020/07/03

Quantum mechanics governs the microscopic world, where low mass and momentum reveal a natural wave-particle duality. Magnifying quantum behaviour to macroscopic scales is a major strength of the technique of cooling and trapping atomic gases, in which low momentum is engineered through extremely low temperatures. Advances in this field have achieved such precise control over atomic systems that gravity, often negligible when considering individual atoms, has emerged as a substantial obstacle. In particular, although weaker trapping fields would allow access to lower temperatures(1,2), gravity empties atom traps that are too weak. Additionally, inertial sensors based on cold atoms could reach better sensitivities if the free-fall time of the atoms after release from the trap could be made longer(3). Planetary orbit, specifically the condition of perpetual free-fall, offers to lift cold-atom studies beyond such terrestrial limitations. Here we report production of rubidium Bose-Einstein condensates (BECs) in an Earth-orbiting research laboratory, the Cold Atom Lab. We observe subnanokelvin BECs in weak trapping potentials with free-expansion times extending beyond one second, providing an initial demonstration of the advantages offered by a microgravity environment for cold-atom experiments and verifying the successful operation of this facility. With routine BEC production, continuing operations will support long-term investigations of trap topologies unique to microgravity(4,5), atom-laser sources(6), few-body physics(7,8)and pathfinding techniques for atom-wave interferometry(9-12).


  
Structure of SAGA and mechanism of TBP deposition on gene promoters 期刊论文
NATURE, 2020, 577 (7792) : 711-+
作者:  Xue, Jenny Y.;  Zhao, Yulei;  Aronowitz, Jordan;  Mai, Trang T.;  Vides, Alberto;  Qeriqi, Besnik;  Kim, Dongsung;  Li, Chuanchuan;  de Stanchina, Elisa;  Mazutis, Linas;  Risso, Davide;  Lito, Piro
收藏  |  浏览/下载:33/0  |  提交时间:2020/07/03

SAGA (Spt-Ada-Gcn5-acetyltransferase) is a 19-subunit complex that stimulates transcription via two chromatin-modifying enzymatic modules and by delivering the TATA box binding protein (TBP) to nucleate the pre-initiation complex on DNA, a pivotal event in the expression of protein-encoding genes(1). Here we present the structure of yeast SAGA with bound TBP. The core of the complex is resolved at 3.5 angstrom resolution (0.143 Fourier shell correlation). The structure reveals the intricate network of interactions that coordinate the different functional domains of SAGA and resolves an octamer of histone-fold domains at the core of SAGA. This deformed octamer deviates considerably from the symmetrical analogue in the nucleosome and is precisely tuned to establish a peripheral site for TBP, where steric hindrance represses binding of spurious DNA. Complementary biochemical analysis points to a mechanism for TBP delivery and release from SAGA that requires transcription factor IIA and whose efficiency correlates with the affinity of DNA to TBP. We provide the foundations for understanding the specific delivery of TBP to gene promoters and the multiple roles of SAGA in regulating gene expression.


Structural studies on the yeast transcription coactivator complex SAGA (Spt-Ada-Gcn5-acetyltransferase) provide insights into the mechanism of initiation of regulated transcription by this multiprotein complex, which is conserved among eukaryotes.