GSTDTAP

浏览/检索结果: 共20条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
Reconciling early Deccan Traps CO2 outgassing and pre-KPB global climate 期刊论文
Proceedings of the National Academy of Science, 2021
作者:  Andres Hernandez Nava;  Benjamin A. Black;  Sally A. Gibson;  Robert J. Bodnar;  Paul R. Renne;  Loÿc Vanderkluysen
收藏  |  浏览/下载:6/0  |  提交时间:2021/04/06
A giant soft-shelled egg from the Late Cretaceous of Antarctica 期刊论文
NATURE, 2020
作者:  Lewnard, Joseph A.;  Lo, Nathan C.;  Arinaminpathy, Nimalan;  Frost, Isabel;  Laxminarayan, Ramanan
收藏  |  浏览/下载:15/0  |  提交时间:2020/06/22

Egg size and structure reflect important constraints on the reproductive and life-history characteristics of vertebrates(1). More than two-thirds of all extant amniotes lay eggs(2). During the Mesozoic era (around 250 million to 65 million years ago), body sizes reached extremes  nevertheless, the largest known egg belongs to the only recently extinct elephant bird(3), which was roughly 66 million years younger than the last nonavian dinosaurs and giant marine reptiles. Here we report a new type of egg discovered in nearshore marine deposits from the Late Cretaceous period (roughly 68 million years ago) of Antarctica. It exceeds all nonavian dinosaur eggs in volume and differs from them in structure. Although the elephant bird egg is slightly larger, its eggshell is roughly five times thicker and shows a substantial prismatic layer and complex pore structure(4). By contrast, the new fossil, visibly collapsed and folded, presents a thin eggshell with a layered structure that lacks a prismatic layer and distinct pores, and is similar to that of most extant lizards and snakes (Lepidosauria)(5). The identity of the animal that laid the egg is unknown, but these preserved morphologies are consistent with the skeletal remains of mosasaurs (large marine lepidosaurs) found nearby. They are not consistent with described morphologies of dinosaur eggs of a similar size class. Phylogenetic analyses of traits for 259 lepidosaur species plus outgroups suggest that the egg belonged to an individual that was at least 7 metres long, hypothesized to be a giant marine reptile, all clades of which have previously been proposed to show live birth(6). Such a large egg with a relatively thin eggshell may reflect derived constraints associated with body shape, reproductive investment linked with gigantism, and lepidosaurian viviparity, in which a '  vestigial'  egg is laid and hatches immediately(7).


A fossil egg unearthed from Cretaceous deposits in Antarctica is more than 20 cm long, exceeds all known nonavian eggs in volume, is soft-shelled, and was perhaps laid by a giant marine lizard such as a mosasaur.


  
Coronavirus vaccines: key questions 期刊论文
NATURE, 2020, 579 (7800) : 481-481
作者:  Esposito, Elga;  Li, Wenlu;  T. Mandeville, Emiri;  Park, Ji-Hyun;  Sencan, Ikbal;  Guo, Shuzhen;  Shi, Jingfei;  Lan, Jing;  Lee, Janice;  Hayakawa, Kazuhide;  Sakadzic, Sava;  Ji, Xunming;  Lo, Eng H.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Some experts warn that accelerated testing will involve some risky trade-offs.


Some experts warn that accelerated testing will involve some risky trade-offs.


  
Strain engineering and epitaxial stabilization of halide perovskites 期刊论文
NATURE, 2020, 577 (7789) : 209-+
作者:  Chen, Yimu;  Lei, Yusheng;  Li, Yuheng;  Yu, Yugang;  Cai, Jinze;  Chiu, Ming-Hui;  Rao, Rahul;  Gu, Yue;  Wang, Chunfeng;  Choi, Woojin;  Hu, Hongjie;  Wang, Chonghe;  Li, Yang;  Song, Jiawei;  Zhang, Jingxin;  Qi, Baiyan;  Lin, Muyang;  Zhang, Zhuorui;  Islam, Ahmad E.;  Maruyama, Benji;  Dayeh, Shadi;  Li, Lain-Jong;  Yang, Kesong;  Lo, Yu-Hwa;  Xu, Sheng
收藏  |  浏览/下载:26/0  |  提交时间:2020/07/03

Strain engineering is a powerful tool with which to enhance semiconductor device performance(1,2). Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties(3-5). Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization(6-8), electrostriction(9), annealing(10-12), van der Waals force(13), thermal expansion mismatch(14), and heat-induced substrate phase transition(15), the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of a-formamidinium lead iodide (alpha-FAPbI(3)) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial alpha-FAPbI(3) thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of alpha-FAPbI(3). Strained epitaxy is also shown to have a substantial stabilization effect on the alpha-FAPbI(3) phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an alpha-FAPbI(3)-based photodetector.


  
A metabolic pathway for bile acid dehydroxylation by the gut microbiome 期刊论文
NATURE, 2020
作者:  Zhong, Miao;  Tran, Kevin;  Min, Yimeng;  Wang, Chuanhao;  Wang, Ziyun;  Dinh, Cao-Thang;  De Luna, Phil;  Yu, Zongqian;  Rasouli, Armin Sedighian;  Brodersen, Peter;  Sun, Song;  Voznyy, Oleksandr;  Tan, Chih-Shan;  Askerka, Mikhail;  Che, Fanglin;  Liu, Min;  Seifitokaldani, Ali;  Pang, Yuanjie;  Lo, Shen-Chuan;  Ip, Alexander;  Ulissi, Zachary;  Sargent, Edward H.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The biosynthetic pathway that produces the secondary bile acids DCA and LCA in human gut microbes has been fully characterized, engineered into another bacterial host, and used to confer DCA production in germ-free mice-an important proof-of-principle for the engineering of gut microbial pathways.


The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 mu M and are known to block the growth ofClostridium difficile(1), promote hepatocellular carcinoma(2)and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref.(3)). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids(4)  the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A-B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe-S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway intoClostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool.


  
Lineage dynamics of the endosymbiotic cell type in the soft coralXenia 期刊论文
NATURE, 2020
作者:  Lewnard, Joseph A.;  Lo, Nathan C.;  Arinaminpathy, Nimalan;  Frost, Isabel;  Laxminarayan, Ramanan
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Many corals harbour symbiotic dinoflagellate algae. The algae live inside coral cells in a specialized membrane compartment known as the symbiosome, which shares the photosynthetically fixed carbon with coral host cells while host cells provide inorganic carbon to the algae for photosynthesis(1). This endosymbiosis-which is critical for the maintenance of coral reef ecosystems-is increasingly threatened by environmental stressors that lead to coral bleaching (that is, the disruption of endosymbiosis), which in turn leads to coral death and the degradation of marine ecosystems(2). The molecular pathways that orchestrate the recognition, uptake and maintenance of algae in coral cells remain poorly understood. Here we report the chromosome-level genome assembly of aXeniaspecies of fast-growing soft coral(3), and use this species as a model to investigate coral-alga endosymbiosis. Single-cell RNA sequencing identified 16 cell clusters, including gastrodermal cells and cnidocytes, inXeniasp. We identified the endosymbiotic cell type, which expresses a distinct set of genes that are implicated in the recognition, phagocytosis and/or endocytosis, and maintenance of algae, as well as in the immune modulation of host coral cells. By couplingXeniasp. regeneration and single-cell RNA sequencing, we observed a dynamic lineage progression of the endosymbiotic cells. The conserved genes associated with endosymbiosis that are reported here may help to reveal common principles by which different corals take up or lose their endosymbionts.


  
Operation of a silicon quantum processor unit cell above one kelvin 期刊论文
NATURE, 2020, 580 (7803) : 350-+
作者:  Han, Kyuho;  Pierce, Sarah E.;  Li, Amy;  Spees, Kaitlyn;  Anderson, Grace R.;  Seoane, Jose A.;  Lo, Yuan-Hung;  Dubreuil, Michael;  Olivas, Micah;  Kamber, Roarke A.;  Wainberg, Michael;  Kostyrko, Kaja;  Kelly, Marcus R.;  Yousefi, Maryam;  Simpkins, Scott W.;  Yao, David
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Quantum computers are expected to outperform conventional computers in several important applications, from molecular simulation to search algorithms, once they can be scaled up to large numbers-typically millions-of quantum bits (qubits)(1-3). For most solid-state qubit technologies-for example, those using superconducting circuits or semiconductor spins-scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature (less than 100 millikelvin)(4-6). Here we demonstrate the operation of a scalable silicon quantum processor unit cell comprising two qubits confined to quantum dots at about 1.5 kelvin. We achieve this by isolating the quantum dots from the electron reservoir, and then initializing and reading the qubits solely via tunnelling of electrons between the two quantum dots(7-9). We coherently control the qubits using electrically driven spin resonance(10,11) in isotopically enriched silicon(12 28)Si, attaining single-qubit gate fidelities of 98.6 per cent and a coherence time of 2 microseconds during '  hot'  operation, comparable to those of spin qubits in natural silicon at millikelvin temperatures(13-16). Furthermore, we show that the unit cell can be operated at magnetic fields as low as 0.1 tesla, corresponding to a qubit control frequency of 3.5 gigahertz, where the qubit energy is well below the thermal energy. The unit cell constitutes the core building block of a full-scale silicon quantum computer and satisfies layout constraints required by error-correction architectures(8),(17). Our work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped He-4 system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array(18,19).


  
CRISPR-mediated live imaging of genome editing and transcription 期刊论文
SCIENCE, 2019, 365 (6459) : 1301-+
作者:  Wang, Haifeng;  Nakamura, Muneaki;  Abbott, Timothy R.;  Zhao, Dehua;  Luo, Kaiwen;  Yu, Cordelia;  Nguyen, Cindy M.;  Lo, Albert;  Daley, Timothy P.;  La Russa, Marie;  Liu, Yanxia;  Qi, Lei S.
收藏  |  浏览/下载:8/0  |  提交时间:2019/11/27
Targeting cardiac fibrosis with engineered T cells 期刊论文
NATURE, 2019, 573 (7774) : 430-+
作者:  Aghajanian, Haig;  Kimura, Toru;  Rurik, Joel G.;  Hancock, Aidan S.;  Leibowitz, Michael S.;  Li, Li;  Scholler, John;  Monslow, James;  Lo, Albert;  Han, Wei;  Wang, Tao;  Bedi, Kenneth;  Morley, Michael P.;  Saldana, Ricardo A. Linares;  Bolar, Nikhita A.;  McDaid, Kendra;  Assenmacher, Charles-Antoine;  Smith, Cheryl L.;  Wirth, Dagmar;  June, Carl H.;  Margulies, Kenneth B.;  Jain, Rajan;  Pure, Ellen;  Albelda, Steven M.;  Epstein, Jonathan A.
收藏  |  浏览/下载:7/0  |  提交时间:2019/11/27
Comment on "Ghost cytometry" 期刊论文
SCIENCE, 2019, 364 (6437)
作者:  Di Carlo, Dino;  Arai, Fumihito;  Goda, Keisuke;  Huang, Tony Jun;  Lo, Yu-Hwa;  Nitta, Nao;  Ozeki, Yasuyuki;  Tsia, Kevin;  Uemura, Sotaro;  Wong, Kenneth K. Y.
收藏  |  浏览/下载:12/0  |  提交时间:2019/11/27