GSTDTAP

浏览/检索结果: 共18条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys 期刊论文
Science, 2021
作者:  Peijian Shi;  Runguang Li;  Yi Li;  Yuebo Wen;  Yunbo Zhong;  Weili Ren;  Zhe Shen;  Tianxiang Zheng;  Jianchao Peng;  Xue Liang;  Pengfei Hu;  Na Min;  Yong Zhang;  Yang Ren;  Peter K. Liaw;  Dierk Raabe;  Yan-Dong Wang
收藏  |  浏览/下载:25/0  |  提交时间:2021/08/25
Peta–electron volt gamma-ray emission from the Crab Nebula 期刊论文
Science, 2021
作者:  The LHAASO Collaboration*†;  Zhen Cao;  F. Aharonian;  Q. An;  Axikegu;  L. X. Bai;  Y. X. Bai;  Y. W. Bao;  D. Bastieri;  X. J. Bi;  Y. J. Bi;  H. Cai;  J. T. Cai;  Zhe Cao;  J. Chang;  J. F. Chang;  B. M. Chen;  E. S. Chen;  J. Chen;  Liang Chen;  Liang Chen;  Long Chen;  M. J. Chen;  M. L. Chen;  Q. H. Chen;  S. H. Chen;  S. Z. Chen;  T. L. Chen;  X. L. Chen;  Y. Chen;  N. Cheng;  Y. D. Cheng;  S. W. Cui;  X. H. Cui;  Y. D. Cui;  B. D’Ettorre Piazzoli;  B. Z. Dai;  H. L. Dai;  Z. G. Dai;  Danzengluobu;  D. della Volpe;  X. J. Dong;  K. K. Duan;  J. H. Fan;  Y. Z. Fan;  Z. X. Fan;  J. Fang;  K. Fang;  C. F. Feng;  L. Feng;  S. H. Feng;  Y. L. Feng;  B. Gao;  C. D. Gao;  L. Q. Gao;  Q. Gao;  W. Gao;  M. M. Ge;  L. S. Geng;  G. H. Gong;  Q. B. Gou;  M. H. Gu;  F. L. Guo;  J. G. Guo;  X. L. Guo;  Y. Q. Guo;  Y. Y. Guo;  Y. A. Han;  H. H. He;  H. N. He;  J. C. He;  S. L. He;  X. B. He;  Y. He;  M. Heller;  Y. K. Hor;  C. Hou;  X. Hou;  H. B. Hu;  S. Hu;  S. C. Hu;  X. J. Hu;  D. H. Huang;  Q. L. Huang;  W. H. Huang;  X. T. Huang;  X. Y. Huang;  Z. C. Huang;  F. Ji;  X. L. Ji;  H. Y. Jia;  K. Jiang;  Z. J. Jiang;  C. Jin;  T. Ke;  D. Kuleshov;  K. Levochkin;  B. B. Li;  Cheng Li;  Cong Li;  F. Li;  H. B. Li;  H. C. Li;  H. Y. Li;  Jian Li;  Jie Li;  K. Li;  W. L. Li;  X. R. Li;  Xin Li;  Xin Li;  Y. Li;  Y. Z. Li;  Zhe Li;  Zhuo Li;  E. W. Liang;  Y. F. Liang;  S. J. Lin;  B. Liu;  C. Liu;  D. Liu;  H. Liu;  H. D. Liu;  J. Liu;  J. L. Liu;  J. S. Liu;  J. Y. Liu;  M. Y. Liu;  R. Y. Liu;  S. M. Liu;  W. Liu;  Y. Liu;  Y. N. Liu;  Z. X. Liu;  W. J. Long;  R. Lu;  H. K. Lv;  B. Q. Ma;  L. L. Ma;  X. H. Ma;  J. R. Mao;  A. Masood;  Z. Min;  W. Mitthumsiri;  T. Montaruli;  Y. C. Nan;  B. Y. Pang;  P. Pattarakijwanich;  Z. Y. Pei;  M. Y. Qi;  Y. Q. Qi;  B. Q. Qiao;  J. J. Qin;  D. Ruffolo;  V. Rulev;  A. Saiz;  L. Shao;  O. Shchegolev;  X. D. Sheng;  J. Y. Shi;  H. C. Song;  Yu. V. Stenkin;  V. Stepanov;  Y. Su;  Q. N. Sun;  X. N. Sun;  Z. B. Sun;  P. H. T. Tam;  Z. B. Tang;  W. W. Tian;  B. D. Wang;  C. Wang;  H. Wang;  H. G. Wang;  J. C. Wang;  J. S. Wang;  L. P. Wang;  L. Y. Wang;  R. N. Wang;  Wei Wang;  Wei Wang;  X. G. Wang;  X. J. Wang;  X. Y. Wang;  Y. Wang;  Y. D. Wang;  Y. J. Wang;  Y. P. Wang;  Z. H. Wang;  Z. X. Wang;  Zhen Wang;  Zheng Wang;  D. M. Wei;  J. J. Wei;  Y. J. Wei;  T. Wen;  C. Y. Wu;  H. R. Wu;  S. Wu;  W. X. Wu;  X. F. Wu;  S. Q. Xi;  J. Xia;  J. J. Xia;  G. M. Xiang;  D. X. Xiao;  G. Xiao;  H. B. Xiao;  G. G. Xin;  Y. L. Xin;  Y. Xing;  D. L. Xu;  R. X. Xu;  L. Xue;  D. H. Yan;  J. Z. Yan;  C. W. Yang;  F. F. Yang;  J. Y. Yang;  L. L. Yang;  M. J. Yang;  R. Z. Yang;  S. B. Yang;  Y. H. Yao;  Z. G. Yao;  Y. M. Ye;  L. Q. Yin;  N. Yin;  X. H. You;  Z. Y. You;  Y. H. Yu;  Q. Yuan;  H. D. Zeng;  T. X. Zeng;  W. Zeng;  Z. K. Zeng;  M. Zha;  X. X. Zhai;  B. B. Zhang;  H. M. Zhang;  H. Y. Zhang;  J. L. Zhang;  J. W. Zhang;  L. X. Zhang;  Li Zhang;  Lu Zhang;  P. F. Zhang;  P. P. Zhang;  R. Zhang;  S. R. Zhang;  S. S. Zhang;  X. Zhang;  X. P. Zhang;  Y. F. Zhang;  Y. L. Zhang;  Yi Zhang;  Yong Zhang;  B. Zhao;  J. Zhao;  L. Zhao;  L. Z. Zhao;  S. P. Zhao;  F. Zheng;  Y. Zheng;  B. Zhou;  H. Zhou;  J. N. Zhou;  P. Zhou;  R. Zhou;  X. X. Zhou;  C. G. Zhu;  F. R. Zhu;  H. Zhu;  K. J. Zhu;  X. Zuo
收藏  |  浏览/下载:14/0  |  提交时间:2021/07/27
SARS-CoV-2 Mpro inhibitors with antiviral activity in a transgenic mouse model 期刊论文
Science, 2021
作者:  Jingxin Qiao;  Yue-Shan Li;  Rui Zeng;  Feng-Liang Liu;  Rong-Hua Luo;  Chong Huang;  Yi-Fei Wang;  Jie Zhang;  Baoxue Quan;  Chenjian Shen;  Xin Mao;  Xinlei Liu;  Weining Sun;  Wei Yang;  Xincheng Ni;  Kai Wang;  Ling Xu;  Zi-Lei Duan;  Qing-Cui Zou;  Hai-Lin Zhang;  Wang Qu;  Yang-Hao-Peng Long;  Ming-Hua Li;  Rui-Cheng Yang;  Xiaolong Liu;  Jing You;  Yangli Zhou;  Rui Yao;  Wen-Pei Li;  Jing-Ming Liu;  Pei Chen;  Yang Liu;  Gui-Feng Lin;  Xin Yang;  Jun Zou;  Linli Li;  Yiguo Hu;  Guang-Wen Lu;  Wei-Min Li;  Yu-Quan Wei;  Yong-Tang Zheng;  Jian Lei;  Shengyong Yang
收藏  |  浏览/下载:17/0  |  提交时间:2021/04/06
Thermal modeling of the lunar regolith at the Chang'E‐4 landing site 期刊论文
Geophysical Research Letters, 2021
作者:  Honglei Lin;  Shuai Li;  Yangting Lin;  Yang Liu;  Yong Wei;  Wei Yang;  Yazhou Yang;  Sen Hu;  Xing Wu;  Rui Xu;  Chunlai Li;  Zhiping He
收藏  |  浏览/下载:12/0  |  提交时间:2021/03/17
The unstable relationship between the precipitation dipole pattern in the Tibetan Plateau and summer NAO 期刊论文
Geophysical Research Letters, 2021
作者:  Yong Liu;  Huopo Chen;  Xiaoyu Hu
收藏  |  浏览/下载:11/0  |  提交时间:2021/02/17
Rational design of layered oxide materials for sodium-ion batteries 期刊论文
Science, 2020
作者:  Chenglong Zhao;  Qidi Wang;  Zhenpeng Yao;  Jianlin Wang;  Benjamín Sánchez-Lengeling;  Feixiang Ding;  Xingguo Qi;  Yaxiang Lu;  Xuedong Bai;  Baohua Li;  Hong Li;  Alán Aspuru-Guzik;  Xuejie Huang;  Claude Delmas;  Marnix Wagemaker;  Liquan Chen;  Yong-Sheng Hu
收藏  |  浏览/下载:13/0  |  提交时间:2020/11/09
New Insight into Lunar Regolith‐forming Processes by the Lunar Rover Yutu‐2 期刊论文
Geophysical Research Letters, 2020
作者:  Honglei Lin;  Yangting Lin;  Wei Yang;  Zhiping He;  Sen Hu;  Yong Wei;  Rui Xu;  Jinhai Zhang;  Xiaohui Liu;  Jianfeng Yang;  Yan Xing;  Chengwu Yu;  Yongliao Zou
收藏  |  浏览/下载:12/0  |  提交时间:2020/06/29
The Effects of Viewing Geometry on the Spectral Analysis of Lunar Regolith as Inferred by in situ Spectrophotometric Measurements of Chang'E-4 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (8)
作者:  Yang, Yazhou;  Lin, Honglei;  Liu, Yang;  Lin, Yangting;  Wei, Yong;  Hu, Sen;  Yang, Wei;  Xu, Rui;  He, Zhiping;  Zou, Yongliao
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
lunar regolith  Chang'  E-4  in situ spectrophotometric measurement  viewing geometry  spectral features  visible and near-infrared  
Structure and mechanism of human diacylglycerol O-acyltransferase 1 期刊论文
NATURE, 2020, 581 (7808) : 329-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The structure of human diacylglycerol O-acyltransferase 1, a membrane protein that synthesizes triacylglycerides, is solved with cryo-electron microscopy, providing insight into its function and mechanism of enzymatic activity.


Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans(1). DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins(2,3). How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


  
The online competition between pro- and anti-vaccination views 期刊论文
NATURE, 2020, 582 (7811) : 230-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Insights into the interactions between pro- and anti-vaccination clusters on Facebook can enable policies and approaches that attempt to interrupt the shift to anti-vaccination views and persuade undecided individuals to adopt a pro-vaccination stance.


Distrust in scientific expertise(1-14) is dangerous. Opposition to vaccination with a future vaccine against SARS-CoV-2, the causal agent of COVID-19, for example, could amplify outbreaks(2-4), as happened for measles in 2019(5,6). Homemade remedies(7,8) and falsehoods are being shared widely on the Internet, as well as dismissals of expert advice(9-11). There is a lack of understanding about how this distrust evolves at the system level(13,14). Here we provide a map of the contention surrounding vaccines that has emerged from the global pool of around three billion Facebook users. Its core reveals a multi-sided landscape of unprecedented intricacy that involves nearly 100 million individuals partitioned into highly dynamic, interconnected clusters across cities, countries, continents and languages. Although smaller in overall size, anti-vaccination clusters manage to become highly entangled with undecided clusters in the main online network, whereas pro-vaccination clusters are more peripheral. Our theoretical framework reproduces the recent explosive growth in anti-vaccination views, and predicts that these views will dominate in a decade. Insights provided by this framework can inform new policies and approaches to interrupt this shift to negative views. Our results challenge the conventional thinking about undecided individuals in issues of contention surrounding health, shed light on other issues of contention such as climate change(11), and highlight the key role of network cluster dynamics in multi-species ecologies(15).