GSTDTAP

浏览/检索结果: 共43条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Record-breaking dust loading during two mega dust storm events over northern China in March 2021: aerosol optical and radiative properties and meteorological drivers 期刊论文
Atmospheric Chemistry and Physics, 2022
作者:  Ke Gui, Wenrui Yao, Huizheng Che, Linchang An, Yu Zheng, Lei Li, Hujia Zhao, Lei Zhang, Junting Zhong, Yaqiang Wang, and Xiaoye Zhang
收藏  |  浏览/下载:21/0  |  提交时间:2022/06/24
Implications of North Atlantic warming for a possible increase of dust activity in northern East Asia 期刊论文
Atmospheric Research, 2022
作者:  Lin Liu, Deying Wang, Zhili Wang, Junting Zhong, ... Xiaoye Zhang
收藏  |  浏览/下载:16/0  |  提交时间:2022/02/23
Role of convection representation across the gray zone in forecasting warm season extreme precipitation over Shanghai from two typical cases 期刊论文
Atmospheric Research, 2020
作者:  Rui Wang, Fengxue Qiao, Xin-Zhong Liang, Yiting Zhu, ... Yang Ding
收藏  |  浏览/下载:5/0  |  提交时间:2020/11/24
Attribution of the worse aerosol pollution in March 2018 in Beijing to meteorological variability 期刊论文
Atmospheric Research, 2020
作者:  Junting Zhong, Xiaoye Zhang, Yaqiang Wang, Junying Sun, ... Wenjie Zhang
收藏  |  浏览/下载:11/0  |  提交时间:2020/10/12
Potential linkages of extreme climate events with vegetation and large-scale circulation indices in an endorheic river basin in northwest China 期刊论文
Atmospheric Research, 2020
作者:  Qingping Cheng, Fanglei Zhong, Ping Wang
收藏  |  浏览/下载:4/0  |  提交时间:2020/09/14
Dissolved organic carbon in rainwater from a karst agricultural area of Southwest China: Variations, sources, and wet deposition fluxes 期刊论文
Atmospheric Research, 2020
作者:  Jie Zeng, Fu-Jun Yue, Min Xiao, Zhong -Jun Wang, ... Cai-Qing Qin
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/21
Gainers and losers of surface and terrestrial water resources in China during 1989-2016 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Wang, Xinxin;  Xiao, Xiangming;  Zou, Zhenhua;  Dong, Jinwei;  Qin, Yuanwei;  Doughty, Russell B.;  Menarguez, Michael A.;  Chen, Bangqian;  Wang, Junbang;  Ye, Hui;  Ma, Jun;  Zhong, Qiaoyan;  Zhao, Bin;  Li, Bo
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/14
A metabolic pathway for bile acid dehydroxylation by the gut microbiome 期刊论文
NATURE, 2020
作者:  Zhong, Miao;  Tran, Kevin;  Min, Yimeng;  Wang, Chuanhao;  Wang, Ziyun;  Dinh, Cao-Thang;  De Luna, Phil;  Yu, Zongqian;  Rasouli, Armin Sedighian;  Brodersen, Peter;  Sun, Song;  Voznyy, Oleksandr;  Tan, Chih-Shan;  Askerka, Mikhail;  Che, Fanglin;  Liu, Min;  Seifitokaldani, Ali;  Pang, Yuanjie;  Lo, Shen-Chuan;  Ip, Alexander;  Ulissi, Zachary;  Sargent, Edward H.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

The biosynthetic pathway that produces the secondary bile acids DCA and LCA in human gut microbes has been fully characterized, engineered into another bacterial host, and used to confer DCA production in germ-free mice-an important proof-of-principle for the engineering of gut microbial pathways.


The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 mu M and are known to block the growth ofClostridium difficile(1), promote hepatocellular carcinoma(2)and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref.(3)). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids(4)  the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A-B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe-S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway intoClostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool.


  
Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms 期刊论文
NATURE, 2020, 579 (7800) : 603-+
作者:  Xu, Wanghuai;  Zheng, Huanxi;  Liu, Yuan;  Zhou, Xiaofeng;  Zhang, Chao;  Song, Yuxin;  Deng, Xu;  Leung, Michael;  Yang, Zhengbao;  Xu, Ronald X.;  Wang, Zhong Lin;  Zeng, Xiao Cheng;  Wang, Zuankai
收藏  |  浏览/下载:20/0  |  提交时间:2020/07/03

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption(1). Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers(1,2). Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer(3,4). The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells(5-7). However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


DNA interstrand crosslinks induced by acetaldehyde are repaired by both the Fanconi anaemia pathway and by a second, excision-independent repair mechanism.


  
A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Tang, Bai-Lu;  Yang, Jie;  Chen, Xiu-Lan;  Wang, Peng;  Zhao, Hui-Lin;  Su, Hai-Nan;  Li, Chun-Yang;  Yu, Yang;  Zhong, Shuai;  Wang, Lei;  Lidbury, Ian;  Ding, Haitao;  Wang, Min;  McMinn, Andrew;  Zhang, Xi-Ying;  Chen, Yin;  Zhang, Yu-Zhong
收藏  |  浏览/下载:14/0  |  提交时间:2020/05/13