GSTDTAP

浏览/检索结果: 共69条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Effect of organic coatings derived from the OH-initiated oxidation of amines on soot morphology and cloud activation 期刊论文
ATMOSPHERIC RESEARCH, 2020, 239
作者:  Chen, Chao;  Enekwizu, Ogochukwu Y.;  Ma, Xin;  Jiang, Youling;  Khalizov, Alexei F.;  Zheng, Jun;  Ma, Yan
收藏  |  浏览/下载:8/0  |  提交时间:2020/08/18
Soot  Amine  Photochemical aging  Restructuring  CCN  
Temperature effects on optical properties and chemical composition of secondary organic aerosol derived from n-dodecane 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (13) : 8123-8137
作者:  Li, Junling;  Wang, Weigang;  Li, Kun;  Zhang, Wenyu;  Peng, Chao;  Zhou, Li;  Shi, Bo;  Chen, Yan;  Liu, Mingyuan;  Li, Hong;  Ge, Maofa
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/21
Characteristics and source apportionment of PM2.5-bound saccharides and carboxylic acids in Central Shanghai, China 期刊论文
ATMOSPHERIC RESEARCH, 2020, 237
作者:  Ren, Guofa;  Yan, Xiaoling;  Ma, Yingge;  Qiao, Liping;  Chen, Zhixiang;  Xin, Yilu;  Zhou, Min;  Shi, Yichao;  Zheng, Kewen;  Zhu, Shuhui;  Huang, Cheng;  Li, Li
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/02
PM2.5  Saccharides  Carboxylic acids  Seasonal variation  PCA  
Impact of topography on black carbon transport to the southern Tibetan Plateau during the pre-monsoon season and its climatic implication 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (10) : 5923-5943
作者:  Zhang, Meixin;  Zhao, Chun;  Cong, Zhiyuan;  Du, Qiuyan;  Xu, Mingyue;  Chen, Yu;  Chen, Ming;  Li, Rui;  Fu, Yunfei;  Zhong, Lei;  Kang, Shichang;  Zhao, Delong;  Yang, Yan
收藏  |  浏览/下载:17/0  |  提交时间:2020/05/20
The water lily genome and the early evolution of flowering plants 期刊论文
NATURE, 2020, 577 (7788) : 79-+
作者:  Zhang, Liangsheng;  Chen, Fei;  Zhang, Xingtan;  Li, Zhen;  Zhao, Yiyong;  Lohaus, Rolf;  Chang, Xiaojun;  Dong, Wei;  Ho, Simon Y. W.;  Liu, Xing;  Song, Aixia;  Chen, Junhao;  Guo, Wenlei;  Wang, Zhengjia;  Zhuang, Yingyu;  Wang, Haifeng;  Chen, Xuequn;  Hu, Juan;  Liu, Yanhui;  Qin, Yuan;  Wang, Kai;  Dong, Shanshan;  Liu, Yang;  Zhang, Shouzhou;  Yu, Xianxian;  Wu, Qian;  Wang, Liangsheng;  Yan, Xueqing;  Jiao, Yuannian;  Kong, Hongzhi;  Zhou, Xiaofan;  Yu, Cuiwei;  Chen, Yuchu;  Li, Fan;  Wang, Jihua;  Chen, Wei;  Chen, Xinlu;  Jia, Qidong;  Zhang, Chi;  Jiang, Yifan;  Zhang, Wanbo;  Liu, Guanhua;  Fu, Jianyu;  Chen, Feng;  Ma, Hong;  Van de Peer, Yves;  Tang, Haibao
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms(1-3). Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


  
Effects of SO2 on optical properties of secondary organic aerosol generated from photooxidation of toluene under different relative humidity conditions 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (7) : 4477-4492
作者:  Zhang, Wenyu;  Wang, Weigang;  Li, Junling;  Peng, Chao;  Li, Kun;  Zhou, Li;  Shi, Bo;  Chen, Yan;  Liu, Mingyuan;  Ge, Maofa
收藏  |  浏览/下载:13/0  |  提交时间:2020/05/13
Structure and mechanism of human diacylglycerol O-acyltransferase 1 期刊论文
NATURE, 2020, 581 (7808) : 329-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The structure of human diacylglycerol O-acyltransferase 1, a membrane protein that synthesizes triacylglycerides, is solved with cryo-electron microscopy, providing insight into its function and mechanism of enzymatic activity.


Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans(1). DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins(2,3). How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


  
The online competition between pro- and anti-vaccination views 期刊论文
NATURE, 2020, 582 (7811) : 230-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Insights into the interactions between pro- and anti-vaccination clusters on Facebook can enable policies and approaches that attempt to interrupt the shift to anti-vaccination views and persuade undecided individuals to adopt a pro-vaccination stance.


Distrust in scientific expertise(1-14) is dangerous. Opposition to vaccination with a future vaccine against SARS-CoV-2, the causal agent of COVID-19, for example, could amplify outbreaks(2-4), as happened for measles in 2019(5,6). Homemade remedies(7,8) and falsehoods are being shared widely on the Internet, as well as dismissals of expert advice(9-11). There is a lack of understanding about how this distrust evolves at the system level(13,14). Here we provide a map of the contention surrounding vaccines that has emerged from the global pool of around three billion Facebook users. Its core reveals a multi-sided landscape of unprecedented intricacy that involves nearly 100 million individuals partitioned into highly dynamic, interconnected clusters across cities, countries, continents and languages. Although smaller in overall size, anti-vaccination clusters manage to become highly entangled with undecided clusters in the main online network, whereas pro-vaccination clusters are more peripheral. Our theoretical framework reproduces the recent explosive growth in anti-vaccination views, and predicts that these views will dominate in a decade. Insights provided by this framework can inform new policies and approaches to interrupt this shift to negative views. Our results challenge the conventional thinking about undecided individuals in issues of contention surrounding health, shed light on other issues of contention such as climate change(11), and highlight the key role of network cluster dynamics in multi-species ecologies(15).


  
Assessing the sensitivity of land-atmosphere coupling strength to boundary and surface layer parameters in the WRF model over Amazon 期刊论文
ATMOSPHERIC RESEARCH, 2020, 234
作者:  Wang, Chen;  Qian, Yun;  Duan, Qingyun;  Huang, Maoyi;  Berg, Larry K.;  Shin, Hyeyum H.;  Feng, Zhe;  Yang, Ben;  Quan, Jiping;  Hong, Songyou;  Yan, Junhua
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
L-A coupling strength  Amazon region  WRF model  Model uncertainties  Parameter sensitivity analysis  
Nanoplasma-enabled picosecond switches for ultrafast electronics (vol 579, pg 534, 2020) 期刊论文
NATURE, 2020, 580 (7803) : E8-E8
作者:  Li, Jing;  Xu, Chuanliang;  Lee, Hyung Joo;  Ren, Shancheng;  Zi, Xiaoyuan;  Zhang, Zhiming;  Wang, Haifeng;  Yu, Yongwei;  Yang, Chenghua;  Gao, Xiaofeng;  Hou, Jianguo;  Wang, Linhui;  Yang, Bo;  Yang, Qing;  Ye, Huamao;  Zhou, Tie;  Lu, Xin;  Wang, Yan;  Qu, Min;  Yang, Qingsong;  Zhang, Wenhui;  Shah, Nakul M.;  Pehrsson, Erica C.;  Wang, Shuo;  Wang, Zengjun;  Jiang, Jun;  Zhu, Yan;  Chen, Rui;  Chen, Huan;  Zhu, Feng;  Lian, Bijun;  Li, Xiaoyun;  Zhang, Yun;  Wang, Chao;  Wang, Yue;  Xiao, Guangan;  Jiang, Junfeng;  Yang, Yue;  Liang, Chaozhao;  Hou, Jianquan;  Han, Conghui;  Chen, Ming;  Jiang, Ning;  Zhang, Dahong;  Wu, Song;  Yang, Jinjian;  Wang, Tao;  Chen, Yongliang;  Cai, Jiantong;  Yang, Wenzeng;  Xu, Jun;  Wang, Shaogang;  Gao, Xu;  Wang, Ting;  Sun, Yinghao
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03