GSTDTAP

浏览/检索结果: 共89条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Differentiation Between Nitrate Aerosol Formation Pathways in a Southeast Chinese City by Dual Isotope and Modeling Studies 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (13)
作者:  Xiao, Hong-Wei;  Zhu, Ren-Guo;  Pan, Yuan-Yuan;  Guo, Wei;  Zheng, Neng-Jian;  Liu, Yong-Hui;  Liu, Cheng;  Zhang, Zhong-Yi;  Wu, Jing-Feng;  Kang, Chang-An;  Luo, Li;  Xiao, Hua-Yun
收藏  |  浏览/下载:19/0  |  提交时间:2020/08/18
El Nino Diversity Across Boreal Spring Predictability Barrier 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (13)
作者:  Wang, Bin;  Luo, Xiao;  Sun, Weiyi;  Yang, Young-Min;  Liu, Jian
收藏  |  浏览/下载:17/0  |  提交时间:2020/06/16
El Nino diversity  El Nino transition  k-means cluster analysis  El Nino precursors  El Nino impact  spring predictability barrier  
Structure of nevanimibe-bound tetrameric human ACAT1 期刊论文
NATURE, 2020, 581 (7808) : 339-U214
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

The structure of human ACAT1 in complex with the inhibitor nevanimibe is resolved by cryo-electron microscopy.


Cholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)(1). The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis(2,3). ACAT1 has also been implicated in Alzheimer'  s disease(4), atherosclerosis(5) and cancers(6). Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe(7), an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity(8). Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases.


  
Fatty acids and cancer-amplified ZDHHC19 promote STAT3 activation throughS-palmitoylation (vol 573, pg 139, 2019) (Retraction of Vol 573, Pg 139, 2020) 期刊论文
NATURE, 2020, 583 (7814) : 154-154
作者:  Zhang, Hao;  Liu, Chun-Xiao;  Gazibegovic, Sasa;  Xu, Di;  Logan, John A.;  Wang, Guanzhong;  van Loo, Nick;  Bommer, Jouri D. S.;  de Moor, Michiel W. A.;  Car, Diana;  Op Het Veld, Roy L. M.;  van Veldhoven, Petrus J.;  Koelling, Sebastian;  Verheijen, Marcel A.;  Pendharkar, Mihir;  Pennachio, Daniel J.;  Shojaei, Borzoyeh;  Lee, Joon Sue;  Palmstrom, Chris J.;  Bakkers, Erik P. A. M.;  Sarma, S. Das;  Kouwenhoven, Leo P.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03
Radiation Controls the Interannual Variability of Evaporation of a Subtropical Lake 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (8)
作者:  Xiao, Wei;  Zhang, Zhen;  Wang, Wei;  Zhang, Mi;  Liu, Qiang;  Hu, Yongbo;  Huang, Wenjing;  Liu, Shoudong;  Lee, Xuhui
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/02
A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by T-reg cells 期刊论文
NATURE, 2020
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:41/0  |  提交时间:2020/07/03

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers(1). The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.5(2-7) contains a distal enhancer that is functional in CD4(+) regulatory T (T-reg) cells and required for T-reg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-kappa B to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3(+) T-reg cells, which are unable to control colitis in a cell-transfer model of the disease. In human T-reg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Shared synteny guides loss-of-function analysis of human enhancer homologues in mice, identifying a distal enhancer at the autoimmune and allergic disease risk locus at chromosome 11q13.5 whose function in regulatory T cells provides a mechanistic basis for its role in disease.


  
Terrestrial CO2 Fluxes, Concentrations, Sources and Budget in Northeast China: Observational and Modeling Studies 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (6)
作者:  Li, Xiaolan;  Hu, Xiao-Ming;  Cai, Changjie;  Jia, Qingyu;  Zhang, Yao;  Liu, Jingmiao;  Xue, Ming;  Xu, Jianming;  Wen, Rihong;  Crowell, Sean M. R.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/02
Recycling and metabolic flexibility dictate life in the lower oceanic crust 期刊论文
NATURE, 2020, 579 (7798) : 250-+
作者:  Zhou, Peng;  Yang, Xing-Lou;  Wang, Xian-Guang;  Hu, Ben;  Zhang, Lei;  Zhang, Wei;  Si, Hao-Rui;  Zhu, Yan;  Li, Bei;  Huang, Chao-Lin;  Chen, Hui-Dong;  Chen, Jing;  Luo, Yun;  Guo, Hua;  Jiang, Ren-Di;  Liu, Mei-Qin;  Chen, Ying;  Shen, Xu-Rui;  Wang, Xi;  Zheng, Xiao-Shuang;  Zhao, Kai;  Chen, Quan-Jiao;  Deng, Fei;  Liu, Lin-Lin;  Yan, Bing;  Zhan, Fa-Xian;  Wang, Yan-Yi;  Xiao, Geng-Fu;  Shi, Zheng-Li
收藏  |  浏览/下载:37/0  |  提交时间:2020/05/13

The lithified lower oceanic crust is one of Earth'  s last biological frontiers as it is difficult to access. It is challenging for microbiota that live in marine subsurface sediments or igneous basement to obtain sufficient carbon resources and energy to support growth(1-3) or to meet basal power requirements(4) during periods of resource scarcity. Here we show how limited and unpredictable sources of carbon and energy dictate survival strategies used by low-biomass microbial communities that live 10-750 m below the seafloor at Atlantis Bank, Indian Ocean, where Earth'  s lower crust is exposed at the seafloor. Assays of enzyme activities, lipid biomarkers, marker genes and microscopy indicate heterogeneously distributed and viable biomass with ultralow cell densities (fewer than 2,000 cells per cm(3)). Expression of genes involved in unexpected heterotrophic processes includes those with a role in the degradation of polyaromatic hydrocarbons, use of polyhydroxyalkanoates as carbon-storage molecules and recycling of amino acids to produce compounds that can participate in redox reactions and energy production. Our study provides insights into how microorganisms in the plutonic crust are able to survive within fractures or porous substrates by coupling sources of energy to organic and inorganic carbon resources that are probably delivered through the circulation of subseafloor fluids or seawater.


  
River Regulation Alleviates the Impacts of Climate Change on US Thermoelectricity Production 期刊论文
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (4)
作者:  Zhang, Xiao;  Li, Hong-Yi;  Leung, L. Ruby;  Liu, Lu;  Hejazi, Mohamad I.;  Forman, Barton A.;  Yigzaw, Wondmagegn
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms 期刊论文
NATURE, 2020, 579 (7800) : 603-+
作者:  Xu, Wanghuai;  Zheng, Huanxi;  Liu, Yuan;  Zhou, Xiaofeng;  Zhang, Chao;  Song, Yuxin;  Deng, Xu;  Leung, Michael;  Yang, Zhengbao;  Xu, Ronald X.;  Wang, Zhong Lin;  Zeng, Xiao Cheng;  Wang, Zuankai
收藏  |  浏览/下载:21/0  |  提交时间:2020/07/03

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption(1). Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers(1,2). Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer(3,4). The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells(5-7). However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


DNA interstrand crosslinks induced by acetaldehyde are repaired by both the Fanconi anaemia pathway and by a second, excision-independent repair mechanism.