GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Global food system emissions could preclude achieving the 1.5° and 2°C climate change targets 期刊论文
Science, 2020
作者:  Michael A. Clark;  Nina G. G. Domingo;  Kimberly Colgan;  Sumil K. Thakrar;  David Tilman;  John Lynch;  Inês L. Azevedo;  Jason D. Hill
收藏  |  浏览/下载:15/0  |  提交时间:2020/11/09
COVID-19 pandemic impacts on global inland fisheries 期刊论文
Proceedings of the National Academy of Sciences, 2020
作者:  Gretchen L. Stokes;  Abigail J. Lynch;  Benjamin S. Lowe;  Simon Funge-Smith;  John Valbo‐Jørgensen;  Samuel J. Smidt
收藏  |  浏览/下载:8/0  |  提交时间:2020/11/09
Continental‐scale tree‐ring‐based projection of Douglas‐fir growth: Testing the limits of space‐for‐time substitution 期刊论文
Global Change Biology, 2020
作者:  Stefan Klesse;  Robert Justin DeRose;  Flurin Babst;  Bryan A. Black;  Leander D. L. Anderegg;  Jodi Axelson;  Ailene Ettinger;  Hardy Griesbauer;  Christopher H. Guiterman;  Grant Harley;  Jill E. Harvey;  Yueh‐;  Hsin Lo;  Ann M. Lynch;  Christopher O'Connor;  Christina Restaino;  Dave Sauchyn;  John D. Shaw;  Dan J. Smith;  Lisa Wood;  Jose Villanueva‐;  ;  az;  Margaret E. K. Evans
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/06
Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (4)
作者:  Lynch, John;  Cain, Michelle;  Pierrehumbert, Raymond;  Allen, Myles
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
climate change  carbon dioxide equivalent  carbon dioxide warming equivalent  global warming potential  GWP*  methane  
Neuronal programming by microbiota regulates intestinal physiology 期刊论文
NATURE, 2020, 578 (7794) : 284-+
作者:  Li, Yilong;  Roberts, Nicola D.;  Wala, Jeremiah A.;  Shapira, Ofer;  Schumacher, Steven E.;  Kumar, Kiran;  Khurana, Ekta;  Waszak, Sebastian;  Korbel, Jan O.;  Haber, James E.;  Imielinski, Marcin;  Weischenfeldt, Joachim;  Beroukhim, Rameen;  Campbell, Peter J.;  Akdemir, Kadir C.;  Alvarez, Eva G.;  Baez-Ortega, Adrian;  Boutros, Paul C.;  Bowtell, David D. L.;  Brors, Benedikt;  Burns, Kathleen H.;  Chan, Kin;  Chen, Ken;  Cortes-Ciriano, Isidro;  Dueso-Barroso, Ana;  Dunford, Andrew J.;  Edwards, Paul A.;  Estivill, Xavier;  Etemadmoghadam, Dariush;  Feuerbach, Lars;  Fink, J. Lynn;  Frenkel-Morgenstern, Milana;  Garsed, Dale W.;  Gerstein, Mark;  Gordenin, Dmitry A.;  Haan, David;  Hess, Julian M.;  Hutter, Barbara;  Jones, David T. W.;  Ju, Young Seok;  Kazanov, Marat D.;  Klimczak, Leszek J.;  Koh, Youngil;  Lee, Eunjung Alice;  Lee, Jake June-Koo;  Lynch, Andy G.;  Macintyre, Geoff;  Markowetz, Florian;  Martincorena, Inigo;  Martinez-Fundichely, Alexander;  Meyerson, Matthew;  Miyano, Satoru;  Nakagawa, Hidewaki;  Navarro, Fabio C. P.;  Ossowski, Stephan;  Park, Peter J.;  Pearson, John, V;  Puiggros, Montserrat;  Rippe, Karsten;  Roberts, Steven A.;  Rodriguez-Martin, Bernardo;  Scully, Ralph;  Shackleton, Mark;  Sidiropoulos, Nikos;  Sieverling, Lina;  Stewart, Chip;  Torrents, David;  Tubio, Jose M. C.;  Villasante, Izar;  Waddell, Nicola;  Yang, Lixing;  Yao, Xiaotong;  Yoon, Sung-Soo;  Zamora, Jorge;  Zhang, Cheng-Zhong
收藏  |  浏览/下载:38/0  |  提交时间:2020/07/03

Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders(1). Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility(2-5), but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.


In a mouse model, aryl hydrocarbon receptor signalling in enteric neurons is revealed as a mechanism that helps to maintain gut homeostasis by integrating the luminal environment with the physiology of intestinal neural circuits.