GSTDTAP

浏览/检索结果: 共4条,第1-4条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Satellite-observed warm-core structure in relation to tropical cyclone intensity change 期刊论文
ATMOSPHERIC RESEARCH, 2020, 240
作者:  Wang, Xiang;  Jiang, Haiyan;  Zhang, Jun A.;  Peng, Ke
收藏  |  浏览/下载:9/0  |  提交时间:2020/08/18
Development of an inactivated vaccine candidate for SARS-CoV-2 期刊论文
Science, 2020
作者:  Qiang Gao;  Linlin Bao;  Haiyan Mao;  Lin Wang;  Kangwei Xu;  Minnan Yang;  Yajing Li;  Ling Zhu;  Nan Wang;  Zhe Lv;  Hong Gao;  Xiaoqin Ge;  Biao Kan;  Yaling Hu;  Jiangning Liu;  Fang Cai;  Deyu Jiang;  Yanhui Yin;  Chengfeng Qin;  Jing Li;  Xuejie Gong;  Xiuyu Lou;  Wen Shi;  Dongdong Wu;  Hengming Zhang;  Lang Zhu;  Wei Deng;  Yurong Li;  Jinxing Lu;  Changgui Li;  Xiangxi Wang;  Weidong Yin;  Yanjun Zhang;  Chuan Qin
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/06
Single-chain heteropolymers transport protons selectively and rapidly 期刊论文
NATURE, 2020, 577 (7789) : 216-+
作者:  Jiang, Tao;  Hall, Aaron;  Eres, Marco;  Hemmatian, Zahra;  Qiao, Baofu;  Zhou, Yun;  Ruan, Zhiyuan;  Couse, Andrew D.;  Heller, William T.;  Huang, Haiyan;  de la Cruz, Monica Olvera;  Rolandi, Marco;  Xu, Ting
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Precise protein sequencing and folding are believed to generate the structure and chemical diversity of natural channels(1,2), both of which are essential to synthetically achieve proton transport performance comparable to that seen in natural systems. Geometrically defined channels have been fabricated using peptides, DNAs, carbon nanotubes, sequence-defined polymers and organic frameworks(3-13). However, none of these channels rivals the performance observed in their natural counterparts. Here we show that without forming an atomically structured channel, four-monomer-based random heteropolymers (RHPs)(14) can mimic membrane proteins and exhibit selective proton transport across lipid bilayers at a rate similar to those of natural proton channels. Statistical control over the monomer distribution in an RHP leads to segmental heterogeneity in hydrophobicity, which facilitates the insertion of single RHPs into the lipid bilayers. It also results in bilayer-spanning segments containing polar monomers that promote the formation of hydrogen-bonded chains(15,16) for proton transport. Our study demonstrates the importance of the adaptability that is enabled by statistical similarity among RHP chains and of the modularity provided by the chemical diversity of monomers, to achieve uniform behaviour in heterogeneous systems. Our results also validate statistical randomness as an unexplored approach to realize protein-like behaviour at the single-polymer-chain level in a predictable manner.


  
Streamflow response to forest management 期刊论文
NATURE, 2020, 578 (7794) : E12-E15
作者:  Jiang, Tao;  Hall, Aaron;  Eres, Marco;  Hemmatian, Zahra;  Qiao, Baofu;  Zhou, Yun;  Ruan, Zhiyuan;  Couse, Andrew D.;  Heller, William T.;  Huang, Haiyan;  de la Cruz, Monica Olvera;  Rolandi, Marco;  Xu, Ting
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13