GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein 期刊论文
Science, 2020
作者:  Christine Toelzer;  Kapil Gupta;  Sathish K. N. Yadav;  Ufuk Borucu;  Andrew D. Davidson;  Maia Kavanagh Williamson;  Deborah K. Shoemark;  Frederic Garzoni;  Oskar Staufer;  Rachel Milligan;  Julien Capin;  Adrian J. Mulholland;  Joachim Spatz;  Daniel Fitzgerald;  Imre Berger;  Christiane Schaffitzel
收藏  |  浏览/下载:13/0  |  提交时间:2020/11/09
Food for thought 期刊论文
Science, 2020
作者:  Gabor Egervari;  Karl M. Glastad;  Shelley L. Berger
收藏  |  浏览/下载:7/0  |  提交时间:2020/11/09
Atmospheric dynamics patterns in southern central Asia since 800 ka revealed by loess‐paleosol sequences in Tajikistan 期刊论文
Geophysical Research Letters, 2020
作者:  Hao Lu;  Jia Jia;  Qiuzhen Yin;  Dunsheng Xia;  Fuyuan Gao;  Hao Liu;  Yijiao Fan;  Zaijun Li;  Xin Wang;  André;  Berger;  Ilhomjon Oimahmadov;  Mustafo Gadoev
收藏  |  浏览/下载:7/0  |  提交时间:2020/08/18
Detailed seismic bathymetry beneath Ekström Ice Shelf, Antarctica: Implications for glacial history and ice‐ocean interaction 期刊论文
Geophysical Research Letters, 2020
作者:  Emma C. Smith;  Tore Hattermann;  Gerhard Kuhn;  Christoph Gaedicke;  Sophie Berger;  Reinhard Drews;  Todd A. Ehlers;  Dieter Franke;  Raphael Gromig;  Coen Hofstede;  Astrid Lambrecht;  Andreas Lä;  ufer;  Christoph Mayer;  Ralf Tiedemann;  Frank Wilhelms;  Olaf Eisen
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/13
Geology of the InSight landing site on Mars 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Golombek, M.;  Warner, N. H.;  Grant, J. A.;  Hauber, E.;  Ansan, V;  Weitz, C. M.;  Williams, N.;  Charalambous, C.;  Wilson, S. A.;  DeMott, A.;  Kopp, M.;  Lethcoe-Wilson, H.;  Berger, L.;  Hausmann, R.;  Marteau, E.;  Vrettos, C.;  Trussell, A.;  Folkner, W.;  Le Maistre, S.;  Mueller, N.;  Grott, M.;  Spohn, T.;  Piqueux, S.;  Millour, E.;  Forget, F.;  Daubar, I;  Murdoch, N.;  Lognonne, P.;  Perrin, C.;  Rodriguez, S.;  Pike, W. T.;  Parker, T.;  Maki, J.;  Abarca, H.;  Deen, R.;  Hall, J.;  Andres, P.;  Ruoff, N.;  Calef, F.;  Smrekar, S.;  Baker, M. M.;  Banks, M.;  Spiga, A.;  Banfield, D.;  Garvin, J.;  Newman, C. E.;  Banerdt, W. B.
收藏  |  浏览/下载:7/0  |  提交时间:2020/05/13
Stress- and ubiquitylation-dependent phase separation of the proteasome 期刊论文
NATURE, 2020, 578 (7794) : 296-+
作者:  Jewell, Jessica;  Emmerling, Johannes;  Vinichenko, Vadim;  Bertram, Christoph;  Berger, Loic;  Daly, Hannah E.;  Keppo, Ilkka;  Krey, Volker;  Gernaat, David E. H. J.;  Fragkiadakis, Kostas;  McCollum, David;  Paroussas, Leonidas;  Riahi, Keywan;  Tavoni, Massimo;  van Vuuren, Detlef
收藏  |  浏览/下载:22/0  |  提交时间:2020/07/03

The proteasome is a major proteolytic machine that regulates cellular proteostasis through selective degradation of ubiquitylated proteins(1,2). A number of ubiquitin-related molecules have recently been found to be involved in the regulation of biomolecular condensates or membraneless organelles, which arise by liquid-liquid phase separation of specific biomolecules, including stress granules, nuclear speckles and autophagosomes(3-8), but it remains unclear whether the proteasome also participates in such regulation. Here we reveal that proteasome-containing nuclear foci form under acute hyperosmotic stress. These foci are transient structures that contain ubiquitylated proteins, p97 (also known as valosin-containing protein (VCP)) and multiple proteasome-interacting proteins, which collectively constitute a proteolytic centre. The major substrates for degradation by these foci were ribosomal proteins that failed to properly assemble. Notably, the proteasome foci exhibited properties of liquid droplets. RAD23B, a substrate-shuttling factor for the proteasome, and ubiquitylated proteins were necessary for formation of proteasome foci. In mechanistic terms, a liquid-liquid phase separation was triggered by multivalent interactions of two ubiquitin-associated domains of RAD23B and ubiquitin chains consisting of four or more ubiquitin molecules. Collectively, our results suggest that ubiquitin-chain-dependent phase separation induces the formation of a nuclear proteolytic compartment that promotes proteasomal degradation.


Hyperosmotic stress leads to a phase separation of the proteasome, triggered by interactions between RAD23B and ubiquitylated proteins, which bring together p97 and proteasome-associated proteins into nuclear proteolytic foci.