GSTDTAP

浏览/检索结果: 共25条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
WHY HEALTHY ARTERIES MIGHT HELP KIDS AVOID COVID COMPLICATIONS 期刊论文
NATURE, 2020, 582 (7812) : 324-325
作者:  Niu, Jixiao;  Sun, Yang;  Chen, Baoen;  Zheng, Baohui;  Jarugumilli, Gopala K.;  Walker, Sarah R.;  Hata, Aaron N.;  Mino-Kenudson, Mari;  Frank, David A.;  Wu, Xu
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03
Coronavirus: limit economic damage 期刊论文
NATURE, 2020, 578 (7796) : 515-515
作者:  Baronti, Lorenzo;  Guzzetti, Ileana;  Ebrahimi, Parisa;  Friebe Sandoz, Sarah;  Steiner, Emilie;  Schlagnitweit, Judith;  Fromm, Bastian;  Silva, Luis;  Fontana, Carolina;  Chen, Alan A.;  Petzold, Katja
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03
HBO1 is required for the maintenance of leukaemia stem cells 期刊论文
NATURE, 2020, 577 (7789) : 266-+
作者:  MacPherson, Laura;  Anokye, Juliana;  Yeung, Miriam M.;  Lam, Enid Y. N.;  Chan, Yih-Chih;  Weng, Chen-Fang;  Yeh, Paul;  Knezevic, Kathy;  Butler, Miriam S.;  Hoegl, Annabelle;  Chan, Kah-Lok;  Burr, Marian L.;  Gearing, Linden J.;  Willson, Tracy;  Liu, Joy;  Choi, Jarny;  Yang, Yuqing;  Bilardi, Rebecca A.;  Falk, Hendrik;  Nghi Nguyen;  Stupple, Paul A.;  Peat, Thomas S.;  Zhang, Ming;  de Silva, Melanie;  Carrasco-Pozo, Catalina;  Avery, Vicky M.;  Khoo, Poh Sim;  Dolezal, Olan;  Dennis, Matthew L.;  Nuttall, Stewart;  Surjadi, Regina;  Newman, Janet;  Ren, Bin;  Leaver, David J.;  Sun, Yuxin;  Baell, Jonathan B.;  Dovey, Oliver;  Vassiliou, George S.;  Grebien, Florian;  Dawson, Sarah-Jane;  Street, Ian P.;  Monahan, Brendon J.;  Burns, Christopher J.;  Choudhary, Chunaram;  Blewitt, Marnie E.;  Voss, Anne K.;  Thomas, Tim;  Dawson, Mark A.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)(1). Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


  
Senolytic CAR T cells reverse senescence-associated pathologies 期刊论文
NATURE, 2020, 583 (7814) : 127-+
作者:  Cortez, Jessica T.;  Montauti, Elena;  Shifrut, Eric;  Gatchalian, Jovylyn;  Zhang, Yusi;  Shaked, Oren;  Xu, Yuanming;  Roth, Theodore L.;  Simeonov, Dimitre R.;  Zhang, Yana;  Chen, Siqi;  Li, Zhongmei;  Woo, Jonathan M.;  Ho, Josephine;  Vogel, Ian A.
收藏  |  浏览/下载:67/0  |  提交时间:2020/07/03

Cellular senescence is characterized by stable cell-cycle arrest and a secretory program that modulates the tissue microenvironment(1,2). Physiologically, senescence serves as a tumour-suppressive mechanism that prevents the expansion of premalignant cells(3,4)and has a beneficial role in wound-healing responses(5,6). Pathologically, the aberrant accumulation of senescent cells generates an inflammatory milieu that leads to chronic tissue damage and contributes to diseases such as liver and lung fibrosis, atherosclerosis, diabetes and osteoarthritis(1,7). Accordingly, eliminating senescent cells from damaged tissues in mice ameliorates the symptoms of these pathologies and even promotes longevity(1,2,8-10). Here we test the therapeutic concept that chimeric antigen receptor (CAR) T cells that target senescent cells can be effective senolytic agents. We identify the urokinase-type plasminogen activator receptor (uPAR)(11)as a cell-surface protein that is broadly induced during senescence and show that uPAR-specific CAR T cells efficiently ablate senescent cells in vitro and in vivo. CAR T cells that target uPAR extend the survival of mice with lung adenocarcinoma that are treated with a senescence-inducing combination of drugs, and restore tissue homeostasis in mice in which liver fibrosis is induced chemically or by diet. These results establish the therapeutic potential of senolytic CAR T cells for senescence-associated diseases.


Chimeric antigen receptor (CAR) T cells targeting uPAR, a cell-surface protein that is upregulated on senescent cells, eliminate senescent cells in vitro and in vivo and reduce liver fibrosis in mice.


  
Electrical manipulation of a topological antiferromagnetic state 期刊论文
NATURE, 2020, 580 (7805) : 608-+
作者:  Chabon, Jacob J.;  Hamilton, Emily G.;  Kurtz, David M.;  Esfahani, Mohammad S.;  Moding, Everett J.;  Stehr, Henning;  Schroers-Martin, Joseph;  Nabet, Barzin Y.;  Chen, Binbin;  Chaudhuri, Aadel A.;  Liu, Chih Long;  Hui, Angela B.;  Jin, Michael C.;  Azad, Tej D.;  Almanza, Diego;  Jeon, Young-Jun;  Nesselbush, Monica C.;  Keh, Lyron Co Ting;  Bonilla, Rene F.;  Yoo, Christopher H.;  Ko, Ryan B.;  Chen, Emily L.;  Merriott, David J.;  Massion, Pierre P.;  Mansfield, Aaron S.;  Jen, Jin;  Ren, Hong Z.;  Lin, Steven H.;  Costantino, Christina L.;  Burr, Risa;  Tibshirani, Robert;  Gambhir, Sanjiv S.;  Berry, Gerald J.;  Jensen, Kristin C.;  West, Robert B.;  Neal, Joel W.;  Wakelee, Heather A.;  Loo, Billy W., Jr.;  Kunder, Christian A.;  Leung, Ann N.;  Lui, Natalie S.;  Berry, Mark F.;  Shrager, Joseph B.;  Nair, Viswam S.;  Haber, Daniel A.;  Sequist, Lecia V.;  Alizadeh, Ash A.;  Diehn, Maximilian
收藏  |  浏览/下载:36/0  |  提交时间:2020/07/03

Room-temperature electrical switching of a topological antiferromagnetic state in polycrystalline Mn3Sn thin films is demonstrated using the same protocol as that used for conventional ferromagnetic metals.


Electrical manipulation of phenomena generated by nontrivial band topology is essential for the development of next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy quasiparticles(1-4). It has various exotic properties, such as a large anomalous Hall effect (AHE) and chiral anomaly, which are robust owing to the topologically protected Weyl nodes(1-16). To manipulate such phenomena, a magnetic version of Weyl semimetals would be useful for controlling the locations of Weyl nodes in the Brillouin zone. Moreover, electrical manipulation of antiferromagnetic Weyl metals would facilitate the use of antiferromagnetic spintronics to realize high-density devices with ultrafast operation(17,18). However, electrical control of a Weyl metal has not yet been reported. Here we demonstrate the electrical switching of a topological antiferromagnetic state and its detection by the AHE at room temperature in a polycrystalline thin film(19) of the antiferromagnetic Weyl metal Mn3Sn9,10,12,20, which exhibits zero-field AHE. Using bilayer devices composed of Mn3Sn and nonmagnetic metals, we find that an electrical current density of about 10(10) to 10(11) amperes per square metre induces magnetic switching in the nonmagnetic metals, with a large change in Hall voltage. In addition, the current polarity along the bias field and the sign of the spin Hall angle of the nonmagnetic metals-positive for Pt (ref. (21)), close to 0 for Cu and negative for W (ref. (22))-determines the sign of the Hall voltage. Notably, the electrical switching in the antiferromagnet is achieved with the same protocol as that used for ferromagnetic metals(23,24). Our results may lead to further scientific and technological advances in topological magnetism and antiferromagnetic spintronics.


  
Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome 期刊论文
NATURE, 2020
作者:  Coll, Anthony P.;  Chen, Michael;  Taskar, Pranali;  Rimmington, Debra;  Patel, Satish;  Tadross, John A.;  Cimino, Irene;  Yang, Ming;  Welsh, Paul;  Virtue, Samuel;  Goldspink, Deborah A.;  Miedzybrodzka, Emily L.;  Konopka, Adam R.;  Esponda, Raul Ruiz;  Huang, Jeffrey T. -J.;  Tung, Y. C. Loraine;  Rodriguez-Cuenca, Sergio
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The cryo-electron microscopy structure of the 16-subunit yeast SWI/SNF complex RSC in complex with a nucleosome substrate provides insights into the chromatin-remodelling function of this family of protein complexes.


Chromatin-remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)(1,2). In the yeast Saccharomyces cerevisiae, the essential SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth1(4,5). RSC removes nucleosomes from promoter regions(6,7) and positions the specialized +1 and -1 nucleosomes that flank NDRs(8,9). Here we present the cryo-electron microscopy structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and actin-related protein (ARP) modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements(8,10,11) that influence RSC functionality(12). The ATPase and arm modules sandwich the nucleosome disc with the Snf2 ATP-coupling (SnAC) domain and the finger helix, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase-nucleosome interactions to regulate RSC activity(5). The RSC-nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer(13).


  
Signatures of self-organized criticality in an ultracold atomic gas (vol 577, pg 481, 2020) 期刊论文
NATURE, 2020, 579 (7800) : E13-E13
作者:  Zhou, Xiaoling;  Feng, Zongqiang;  Zhu, Linli;  Xu, Jianing;  Miyagi, Lowell;  Dong, Hongliang;  Sheng, Hongwei;  Wang, Yanju;  Li, Quan;  Ma, Yanming;  Zhang, Hengzhong;  Yan, Jinyuan;  Tamura, Nobumichi;  Kunz, Martin;  Lutker, Katie;  Huang, Tianlin;  Hughes, Darcy A.;  Huang, Xiaoxu;  Chen, Bin
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  
Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide 期刊论文
NATURE, 2020, 578 (7796) : 545-+
作者:  Kum, Hyun S.;  Lee, Hyungwoo;  Kim, Sungkyu;  Lindemann, Shane;  Kong, Wei;  Qiao, Kuan;  Chen, Peng;  Irwin, Julian;  Lee, June Hyuk;  Xie, Saien;  Subramanian, Shruti;  Shim, Jaewoo;  Bae, Sang-Hoon;  Choi, Chanyeol;  Ranno, Luigi;  Seo, Seungju;  Lee, Sangho;  Bauer, Jackson;  Li, Huashan;  Lee, Kyusang;  Robinson, Joshua A.;  Ross, Caroline A.;  Schlom, Darrell G.;  Rzchowski, Mark S.;  Eom, Chang-Beom;  Kim, Jeehwan
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Chirality is ubiquitous in nature, and populations of opposite chiralities are surprisingly asymmetric at fundamental levels(1,2). Examples range from parity violation in the subatomic weak force to homochirality in biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology(2). In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks mirror planes, space-inversion centres or rotoinversion axes(1). Typically, geometrical chirality is predefined by the chiral lattice structure of a material, which is fixed on formation of the crystal. By contrast, in materials with gyrotropic order(3-6), electrons spontaneously organize themselves to exhibit macroscopic chirality in an originally achiral lattice. Although such order-which has been proposed as the quantum analogue of cholesteric liquid crystals-has attracted considerable interest(3-15), no clear observation or manipulation of gyrotropic order has been achieved so far. Here we report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal 1T-TiSe2. We show that shining mid-infrared circularly polarized light on 1T-TiSe2 while cooling it below the critical temperature leads to the preferential formation of one chiral domain. The chirality of this state is confirmed by the measurement of an out-of-plane circular photogalvanic current, the direction of which depends on the optical induction. Although the role of domain walls requires further investigation with local probes, the methodology demonstrated here can be applied to realize and control chiral electronic phases in other quantum materials(4,16).


Optical chiral induction and spontaneous gyrotropic electronic order are realized in the transition-metal chalcogenide 1T-TiSe2 by using illumination with mid-infrared circularly polarized light and simultaneous cooling below the critical temperature.


  
Neuronal programming by microbiota regulates intestinal physiology 期刊论文
NATURE, 2020, 578 (7794) : 284-+
作者:  Li, Yilong;  Roberts, Nicola D.;  Wala, Jeremiah A.;  Shapira, Ofer;  Schumacher, Steven E.;  Kumar, Kiran;  Khurana, Ekta;  Waszak, Sebastian;  Korbel, Jan O.;  Haber, James E.;  Imielinski, Marcin;  Weischenfeldt, Joachim;  Beroukhim, Rameen;  Campbell, Peter J.;  Akdemir, Kadir C.;  Alvarez, Eva G.;  Baez-Ortega, Adrian;  Boutros, Paul C.;  Bowtell, David D. L.;  Brors, Benedikt;  Burns, Kathleen H.;  Chan, Kin;  Chen, Ken;  Cortes-Ciriano, Isidro;  Dueso-Barroso, Ana;  Dunford, Andrew J.;  Edwards, Paul A.;  Estivill, Xavier;  Etemadmoghadam, Dariush;  Feuerbach, Lars;  Fink, J. Lynn;  Frenkel-Morgenstern, Milana;  Garsed, Dale W.;  Gerstein, Mark;  Gordenin, Dmitry A.;  Haan, David;  Hess, Julian M.;  Hutter, Barbara;  Jones, David T. W.;  Ju, Young Seok;  Kazanov, Marat D.;  Klimczak, Leszek J.;  Koh, Youngil;  Lee, Eunjung Alice;  Lee, Jake June-Koo;  Lynch, Andy G.;  Macintyre, Geoff;  Markowetz, Florian;  Martincorena, Inigo;  Martinez-Fundichely, Alexander;  Meyerson, Matthew;  Miyano, Satoru;  Nakagawa, Hidewaki;  Navarro, Fabio C. P.;  Ossowski, Stephan;  Park, Peter J.;  Pearson, John, V;  Puiggros, Montserrat;  Rippe, Karsten;  Roberts, Steven A.;  Rodriguez-Martin, Bernardo;  Scully, Ralph;  Shackleton, Mark;  Sidiropoulos, Nikos;  Sieverling, Lina;  Stewart, Chip;  Torrents, David;  Tubio, Jose M. C.;  Villasante, Izar;  Waddell, Nicola;  Yang, Lixing;  Yao, Xiaotong;  Yoon, Sung-Soo;  Zamora, Jorge;  Zhang, Cheng-Zhong
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders(1). Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility(2-5), but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.


In a mouse model, aryl hydrocarbon receptor signalling in enteric neurons is revealed as a mechanism that helps to maintain gut homeostasis by integrating the luminal environment with the physiology of intestinal neural circuits.


  
A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds 期刊论文
NATURE, 2020, 580 (7803) : 409-+
作者:  Al-Shayeb, Basem;  Sachdeva, Rohan;  Chen, Lin-Xing;  Ward, Fred;  Munk, Patrick;  Devoto, Audra;  Castelle, Cindy J.;  Olm, Matthew R.;  Bouma-Gregson, Keith;  Amano, Yuki;  He, Christine;  Meheust, Raphael;  Brooks, Brandon;  Thomas, Alex;  Levy, Adi;  Matheus-Carnevali, Paula;  Sun, Christine;  Goltsman, Daniela S. A.;  Borton, Mikayla A.;  Sharrar, Allison;  Jaffe, Alexander L.;  Nelson, Tara C.;  Kantor, Rose;  Keren, Ray;  Lane, Katherine R.;  Farag, Ibrahim F.;  Lei, Shufei;  Finstad, Kari;  Amundson, Ronald;  Anantharaman, Karthik;  Zhou, Jinglie;  Probst, Alexander J.;  Power, Mary E.;  Tringe, Susannah G.;  Li, Wen-Jun;  Wrighton, Kelly;  Harrison, Sue;  Morowitz, Michael;  Relman, David A.;  Doudna, Jennifer A.;  Lehours, Anne-Catherine;  Warren, Lesley;  Cate, Jamie H. D.;  Santini, Joanne M.;  Banfield, Jillian F.
收藏  |  浏览/下载:35/0  |  提交时间:2020/07/03

Mycobacterium tuberculosis (Mtb) is an obligate human pathogen and the causative agent of tuberculosis(1-3). Although Mtb can synthesize vitamin B-12 (cobalamin) de novo, uptake of cobalamin has been linked to pathogenesis of tuberculosis2. Mtb does not encode any characterized cobalamin transporter(4-6)  however, the gene rv1819c was found to be essential for uptake of cobalamin(1). This result is difficult to reconcile with the original annotation of Rv1819c as a protein implicated in the transport of antimicrobial peptides such as bleomycin(7). In addition, uptake of cobalamin seems inconsistent with the amino acid sequence, which suggests that Rv1819c has a bacterial ATP-binding cassette (ABC)-exporter fold1. Here, we present structures of Rv1819c, which reveal that the protein indeed contains the ABC-exporter fold, as well as a large water-filled cavity of about 7,700 angstrom(3), which enables the protein to transport the unrelated hydrophilic compounds bleomycin and cobalamin. On the basis of these structures, we propose that Rv1819c is a multi-solute transporter for hydrophilic molecules, analogous to the multidrug exporters of the ABC transporter family, which pump out structurally diverse hydrophobic compounds from cells(8-11).