GSTDTAP

浏览/检索结果: 共25条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Revealing enigmatic mucus structures in the deep sea using DeepPIV 期刊论文
NATURE, 2020, 583 (7814) : 78-+
作者:  Nguyen, Ngoc Uyen Nhi;  Canseco, Diana C.;  Xiao, Feng;  Nakada, Yuji;  Li, Shujuan;  Lam, Nicholas T.;  Muralidhar, Shalini A.;  Savla, Jainy J.;  Hill, Joseph A.;  Le, Victor;  Zidan, Kareem A.;  El-Feky, Hamed W.;  Wang, Zhaoning;  Ahmed, Mahmoud Salama;  Hubbi, Maimon E.;  Menendez-Montes, Ivan
收藏  |  浏览/下载:13/0  |  提交时间:2020/06/09

Advanced deep-sea imaging tools yield insights into the structure and function of mucus filtration houses built by midwater giant larvaceans.


Many animals build complex structures to aid in their survival, but very few are built exclusively from materials that animals create (1,2). In the midwaters of the ocean, mucoid structures are readily secreted by numerous animals, and serve many vital functions(3,4). However, little is known about these mucoid structures owing to the challenges of observing them in the deep sea. Among these mucoid forms, the '  houses'  of larvaceans are marvels of nature(5), and in the ocean twilight zone giant larvaceans secrete and build mucus filtering structures that can reach diameters of more than 1 m(6). Here we describe in situ laser-imaging technology(7) that reconstructs three-dimensional models of mucus forms. The models provide high-resolution views of giant larvacean houses and elucidate the role that house structure has in food capture and predator avoidance. Now that tools exist to study mucus structures found throughout the ocean, we can shed light on some of nature'  s most complex forms.


  
Millennial-scale hydroclimate control of tropical soil carbon storage 期刊论文
NATURE, 2020, 581 (7806) : 63-+
作者:  Lam, Tommy Tsan-Yuk;  Jia, Na;  Zhang, Ya-Wei;  Shum, Marcus Ho-Hin;  Jiang, Jia-Fu;  Zhu, Hua-Chen;  Tong, Yi-Gang;  Shi, Yong-Xia;  Ni, Xue-Bing;  Liao, Yun-Shi;  Li, Wen-Juan;  Jiang, Bao-Gui;  Wei, Wei;  Yuan, Ting-Ting;  Zheng, Kui;  Cui, Xiao-Ming;  Li, Jie;  Pei, Guang-Qian
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Over the past 18,000 years, the residence time and amount of soil carbon stored in the Ganges-Brahmaputra basin have been controlled by the intensity of Indian Summer Monsoon rainfall, with greater carbon destabilization during wetter, warmer conditions.


The storage of organic carbon in the terrestrial biosphere directly affects atmospheric concentrations of carbon dioxide over a wide range of timescales. Within the terrestrial biosphere, the magnitude of carbon storage can vary in response to environmental perturbations such as changing temperature or hydroclimate(1), potentially generating feedback on the atmospheric inventory of carbon dioxide. Although temperature controls the storage of soil organic carbon at mid and high latitudes(2,3), hydroclimate may be the dominant driver of soil carbon persistence in the tropics(4,5)  however, the sensitivity of tropical soil carbon turnover to large-scale hydroclimate variability remains poorly understood. Here we show that changes in Indian Summer Monsoon rainfall have controlled the residence time of soil carbon in the Ganges-Brahmaputra basin over the past 18,000 years. Comparison of radiocarbon ages of bulk organic carbon and terrestrial higher-plant biomarkers with co-located palaeohydrological records(6) reveals a negative relationship between monsoon rainfall and soil organic carbon stocks on a millennial timescale. Across the deglaciation period, a depletion of basin-wide soil carbon stocks was triggered by increasing rainfall and associated enhanced soil respiration rates. Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilization, further increasing atmospheric carbon dioxide concentrations.


  
Structure of nevanimibe-bound tetrameric human ACAT1 期刊论文
NATURE, 2020, 581 (7808) : 339-U214
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

The structure of human ACAT1 in complex with the inhibitor nevanimibe is resolved by cryo-electron microscopy.


Cholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)(1). The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis(2,3). ACAT1 has also been implicated in Alzheimer'  s disease(4), atherosclerosis(5) and cancers(6). Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe(7), an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity(8). Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases.


  
Hidden neural states underlie canary song syntax 期刊论文
NATURE, 2020
作者:  Bao, Han;  Duan, Junlei;  Jin, Shenchao;  Lu, Xingda;  Li, Pengxiong;  Qu, Weizhi;  Wang, Mingfeng;  Novikova, Irina;  Mikhailov, Eugeniy E.;  Zhao, Kai-Feng;  Molmer, Klaus;  Shen, Heng;  Xiao, Yanhong
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Neurons in the canary premotor cortex homologue encode past song phrases and transitions, carrying information relevant to future choice of phrases as '  hidden states'  during song.


Coordinated skills such as speech or dance involve sequences of actions that follow syntactic rules in which transitions between elements depend on the identities and order of past actions. Canary songs consist of repeated syllables called phrases, and the ordering of these phrases follows long-range rules(1)in which the choice of what to sing depends on the song structure many seconds prior. The neural substrates that support these long-range correlations are unknown. Here, using miniature head-mounted microscopes and cell-type-specific genetic tools, we observed neural activity in the premotor nucleus HVC(2-4)as canaries explored various phrase sequences in their repertoire. We identified neurons that encode past transitions, extending over four phrases and spanning up to four seconds and forty syllables. These neurons preferentially encode past actions rather than future actions, can reflect more than one song history, and are active mostly during the rare phrases that involve history-dependent transitions in song. These findings demonstrate that the dynamics of HVC include '  hidden states'  that are not reflected in ongoing behaviour but rather carry information about prior actions. These states provide a possible substrate for the control of syntax transitions governed by long-range rules.


  
Fatty acids and cancer-amplified ZDHHC19 promote STAT3 activation throughS-palmitoylation (vol 573, pg 139, 2019) (Retraction of Vol 573, Pg 139, 2020) 期刊论文
NATURE, 2020, 583 (7814) : 154-154
作者:  Zhang, Hao;  Liu, Chun-Xiao;  Gazibegovic, Sasa;  Xu, Di;  Logan, John A.;  Wang, Guanzhong;  van Loo, Nick;  Bommer, Jouri D. S.;  de Moor, Michiel W. A.;  Car, Diana;  Op Het Veld, Roy L. M.;  van Veldhoven, Petrus J.;  Koelling, Sebastian;  Verheijen, Marcel A.;  Pendharkar, Mihir;  Pennachio, Daniel J.;  Shojaei, Borzoyeh;  Lee, Joon Sue;  Palmstrom, Chris J.;  Bakkers, Erik P. A. M.;  Sarma, S. Das;  Kouwenhoven, Leo P.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03
A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by T-reg cells 期刊论文
NATURE, 2020
作者:  Ma, Xiyu;  Claus, Lucas A. N.;  Leslie, Michelle E.;  Tao, Kai;  Wu, Zhiping;  Liu, Jun;  Yu, Xiao;  Li, Bo;  Zhou, Jinggeng;  Savatin, Daniel V.;  Peng, Junmin;  Tyler, Brett M.;  Heese, Antje;  Russinova, Eugenia;  He, Ping;  Shan, Libo
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers(1). The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.5(2-7) contains a distal enhancer that is functional in CD4(+) regulatory T (T-reg) cells and required for T-reg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-kappa B to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3(+) T-reg cells, which are unable to control colitis in a cell-transfer model of the disease. In human T-reg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Shared synteny guides loss-of-function analysis of human enhancer homologues in mice, identifying a distal enhancer at the autoimmune and allergic disease risk locus at chromosome 11q13.5 whose function in regulatory T cells provides a mechanistic basis for its role in disease.


  
Origin of complexity in haemoglobin evolution 期刊论文
NATURE, 2020
作者:  Cheema, Suraj S.;  Kwon, Daewoong;  Shanker, Nirmaan;  dos Reis, Roberto;  Hsu, Shang-Lin;  Xiao, Jun;  Zhang, Haigang;  Wagner, Ryan;  Datar, Adhiraj;  McCarter, Margaret R.;  Serrao, Claudy R.;  Yadav, Ajay K.;  Karbasian, Golnaz;  Hsu, Cheng-Hsiang;  Tan, Ava J.;  Wang, Li-Chen;  Thakare, Vishal;  Zhang, Xiang;  Mehta, Apurva;  Karapetrova, Evguenia;  Chopdekar, Rajesh, V;  Shafer, Padraic;  Arenholz, Elke;  Hu, Chenming;  Proksch, Roger;  Ramesh, Ramamoorthy;  Ciston, Jim;  Salahuddin, Sayeef
收藏  |  浏览/下载:50/0  |  提交时间:2020/07/03

Most proteins associate into multimeric complexes with specific architectures(1,2), which often have functional properties such as cooperative ligand binding or allosteric regulation(3). No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous alpha- and beta-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical '  missing link'  through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct alpha- and beta-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein'  s structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.


Experimental analysis of reconstructed ancestral globins reveals that haemoglobin'  s complex tetrameric structure and oxygen-binding functions evolved by simple genetic and biophysical mechanisms.


  
Notch signalling drives synovial fibroblast identity and arthritis pathology 期刊论文
NATURE, 2020, 582 (7811) : 259-+
作者:  Han, Xiaoping;  Zhou, Ziming;  Fei, Lijiang;  Sun, Huiyu;  Wang, Renying;  Chen, Yao;  Chen, Haide;  Wang, Jingjing;  Tang, Huanna;  Ge, Wenhao;  Zhou, Yincong;  Ye, Fang;  Jiang, Mengmeng;  Wu, Junqing;  Xiao, Yanyu;  Jia, Xiaoning;  Zhang, Tingyue;  Ma, Xiaojie;  Zhang, Qi;  Bai, Xueli;  Lai, Shujing;  Yu, Chengxuan;  Zhu, Lijun;  Lin, Rui;  Gao, Yuchi;  Wang, Min;  Wu, Yiqing;  Zhang, Jianming;  Zhan, Renya;  Zhu, Saiyong;  Hu, Hailan;  Wang, Changchun;  Chen, Ming;  Huang, He;  Liang, Tingbo;  Chen, Jianghua;  Wang, Weilin;  Zhang, Dan;  Guo, Guoji
收藏  |  浏览/下载:43/0  |  提交时间:2020/07/03

NOTCH3 signalling is shown to be the underlying driver of the differentiation and expansion of a subset of synovial fibroblasts implicated in the pathogenesis of rheumatoid arthritis.


The synovium is a mesenchymal tissue composed mainly of fibroblasts, with a lining and sublining that surround the joints. In rheumatoid arthritis the synovial tissue undergoes marked hyperplasia, becomes inflamed and invasive, and destroys the joint(1,2). It has recently been shown that a subset of fibroblasts in the sublining undergoes a major expansion in rheumatoid arthritis that is linked to disease activity(3-5)  however, the molecular mechanism by which these fibroblasts differentiate and expand is unknown. Here we identify a critical role for NOTCH3 signalling in the differentiation of perivascular and sublining fibroblasts that express CD90 (encoded by THY1). Using single-cell RNA sequencing and synovial tissue organoids, we found that NOTCH3 signalling drives both transcriptional and spatial gradients-emanating from vascular endothelial cells outwards-in fibroblasts. In active rheumatoid arthritis, NOTCH3 and Notch target genes are markedly upregulated in synovial fibroblasts. In mice, the genetic deletion of Notch3 or the blockade of NOTCH3 signalling attenuates inflammation and prevents joint damage in inflammatory arthritis. Our results indicate that synovial fibroblasts exhibit a positional identity that is regulated by endothelium-derived Notch signalling, and that this stromal crosstalk pathway underlies inflammation and pathology in inflammatory arthritis.


  
Nanoplasma-enabled picosecond switches for ultrafast electronics (vol 579, pg 534, 2020) 期刊论文
NATURE, 2020, 580 (7803) : E8-E8
作者:  Li, Jing;  Xu, Chuanliang;  Lee, Hyung Joo;  Ren, Shancheng;  Zi, Xiaoyuan;  Zhang, Zhiming;  Wang, Haifeng;  Yu, Yongwei;  Yang, Chenghua;  Gao, Xiaofeng;  Hou, Jianguo;  Wang, Linhui;  Yang, Bo;  Yang, Qing;  Ye, Huamao;  Zhou, Tie;  Lu, Xin;  Wang, Yan;  Qu, Min;  Yang, Qingsong;  Zhang, Wenhui;  Shah, Nakul M.;  Pehrsson, Erica C.;  Wang, Shuo;  Wang, Zengjun;  Jiang, Jun;  Zhu, Yan;  Chen, Rui;  Chen, Huan;  Zhu, Feng;  Lian, Bijun;  Li, Xiaoyun;  Zhang, Yun;  Wang, Chao;  Wang, Yue;  Xiao, Guangan;  Jiang, Junfeng;  Yang, Yue;  Liang, Chaozhao;  Hou, Jianquan;  Han, Conghui;  Chen, Ming;  Jiang, Ning;  Zhang, Dahong;  Wu, Song;  Yang, Jinjian;  Wang, Tao;  Chen, Yongliang;  Cai, Jiantong;  Yang, Wenzeng;  Xu, Jun;  Wang, Shaogang;  Gao, Xu;  Wang, Ting;  Sun, Yinghao
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03
Recycling and metabolic flexibility dictate life in the lower oceanic crust 期刊论文
NATURE, 2020, 579 (7798) : 250-+
作者:  Zhou, Peng;  Yang, Xing-Lou;  Wang, Xian-Guang;  Hu, Ben;  Zhang, Lei;  Zhang, Wei;  Si, Hao-Rui;  Zhu, Yan;  Li, Bei;  Huang, Chao-Lin;  Chen, Hui-Dong;  Chen, Jing;  Luo, Yun;  Guo, Hua;  Jiang, Ren-Di;  Liu, Mei-Qin;  Chen, Ying;  Shen, Xu-Rui;  Wang, Xi;  Zheng, Xiao-Shuang;  Zhao, Kai;  Chen, Quan-Jiao;  Deng, Fei;  Liu, Lin-Lin;  Yan, Bing;  Zhan, Fa-Xian;  Wang, Yan-Yi;  Xiao, Geng-Fu;  Shi, Zheng-Li
收藏  |  浏览/下载:37/0  |  提交时间:2020/05/13

The lithified lower oceanic crust is one of Earth'  s last biological frontiers as it is difficult to access. It is challenging for microbiota that live in marine subsurface sediments or igneous basement to obtain sufficient carbon resources and energy to support growth(1-3) or to meet basal power requirements(4) during periods of resource scarcity. Here we show how limited and unpredictable sources of carbon and energy dictate survival strategies used by low-biomass microbial communities that live 10-750 m below the seafloor at Atlantis Bank, Indian Ocean, where Earth'  s lower crust is exposed at the seafloor. Assays of enzyme activities, lipid biomarkers, marker genes and microscopy indicate heterogeneously distributed and viable biomass with ultralow cell densities (fewer than 2,000 cells per cm(3)). Expression of genes involved in unexpected heterotrophic processes includes those with a role in the degradation of polyaromatic hydrocarbons, use of polyhydroxyalkanoates as carbon-storage molecules and recycling of amino acids to produce compounds that can participate in redox reactions and energy production. Our study provides insights into how microorganisms in the plutonic crust are able to survive within fractures or porous substrates by coupling sources of energy to organic and inorganic carbon resources that are probably delivered through the circulation of subseafloor fluids or seawater.