GSTDTAP

浏览/检索结果: 共76条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Wang, Junfeng;  Li, Jingyi;  Ye, Jianhuai;  Zhao, Jian;  Wu, Yangzhou;  Hu, Jianlin;  Liu, Dantong;  Nie, Dongyang;  Shen, Fuzhen;  Huang, Xiangpeng;  Huang, Dan Dan;  Ji, Dongsheng;  Sun, Xu;  Xu, Weiqi;  Guo, Jianping;  Song, Shaojie;  Qin, Yiming;  Liu, Pengfei;  Turner, Jay R.;  Lee, Hyun Chul;  Hwang, Sungwoo;  Liao, Hong;  Martin, Scot T.;  Zhang, Qi;  Chen, Mindong;  Sun, Yele;  Ge, Xinlei;  Jacob, Daniel J.
收藏  |  浏览/下载:18/0  |  提交时间:2020/06/09
Four-dimensional surface motions of the Slumgullion landslide and quantification of hydrometeorological forcing 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Hu, Xie;  Buergmann, Roland;  Schulz, William H.;  Fielding, Eric J.
收藏  |  浏览/下载:6/0  |  提交时间:2020/06/09
Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (21) : 11566-11572
作者:  Tong, Yindong;  Wang, Mengzhu;  Penuelas, Josep;  Liu, Xueyan;  Paerl, Hans W.;  Elser, James J.;  Sardans, Jordi;  Couture, Raoul-Marie;  Larssen, Thorjorn;  Hu, Hongying;  Dong, Xin;  He, Wei;  Zhang, Wei;  Wang, Xuejun;  Zhang, Yang;  Liu, Yi;  Zeng, Siyu;  Kong, Xiangzhen;  Janssen, Annette B. G.;  Lin, Yan
收藏  |  浏览/下载:12/0  |  提交时间:2020/05/13
nutrient balance  water quality change  anthropogenic source  wastewater treatment  aquatic ecosystem  
Structures of human pannexin 1 reveal ion pathways and mechanism of gating 期刊论文
NATURE, 2020
作者:  Krause, David W.;  Hoffmann, Simone;  Hu, Yaoming;  Wible, John R.;  Rougier, Guillermo W.;  Kirk, E. Christopher;  Groenke, Joseph R.;  Rogers, Raymond R.;  Rossie, James B.;  Schultz, Julia A.;  Evans, Alistair R.;  von Koenigswald, Wighart;  Rahantarisoa, Lydia J.
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

Cryo-electron microscopy structures of the ATP-permeable channel pannexin 1 reveal a gating mechanism involving multiple distinct ion-conducting pathways.


Pannexin 1 (PANX1) is an ATP-permeable channel with critical roles in a variety of physiological functions such as blood pressure regulation(1), apoptotic cell clearance(2) and human oocyte development(3). Here we present several structures of human PANX1 in a heptameric assembly at resolutions of up to 2.8 angstrom, including an apo state, a caspase-7-cleaved state and a carbenoxolone-bound state. We reveal a gating mechanism that involves two ion-conducting pathways. Under normal cellular conditions, the intracellular entry of the wide main pore is physically plugged by the C-terminal tail. Small anions are conducted through narrow tunnels in the intracellular domain. These tunnels connect to the main pore and are gated by a long linker between the N-terminal helix and the first transmembrane helix. During apoptosis, the C-terminal tail is cleaved by caspase, allowing the release of ATP through the main pore. We identified a carbenoxolone-binding site embraced by W74 in the extracellular entrance and a role for carbenoxolone as a channel blocker. We identified a gap-junction-like structure using a glycosylation-deficient mutant, N255A. Our studies provide a solid foundation for understanding the molecular mechanisms underlying the channel gating and inhibition of PANX1 and related large-pore channels.


  
Origin of complexity in haemoglobin evolution 期刊论文
NATURE, 2020
作者:  Cheema, Suraj S.;  Kwon, Daewoong;  Shanker, Nirmaan;  dos Reis, Roberto;  Hsu, Shang-Lin;  Xiao, Jun;  Zhang, Haigang;  Wagner, Ryan;  Datar, Adhiraj;  McCarter, Margaret R.;  Serrao, Claudy R.;  Yadav, Ajay K.;  Karbasian, Golnaz;  Hsu, Cheng-Hsiang;  Tan, Ava J.;  Wang, Li-Chen;  Thakare, Vishal;  Zhang, Xiang;  Mehta, Apurva;  Karapetrova, Evguenia;  Chopdekar, Rajesh, V;  Shafer, Padraic;  Arenholz, Elke;  Hu, Chenming;  Proksch, Roger;  Ramesh, Ramamoorthy;  Ciston, Jim;  Salahuddin, Sayeef
收藏  |  浏览/下载:50/0  |  提交时间:2020/07/03

Most proteins associate into multimeric complexes with specific architectures(1,2), which often have functional properties such as cooperative ligand binding or allosteric regulation(3). No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous alpha- and beta-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical '  missing link'  through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct alpha- and beta-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein'  s structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.


Experimental analysis of reconstructed ancestral globins reveals that haemoglobin'  s complex tetrameric structure and oxygen-binding functions evolved by simple genetic and biophysical mechanisms.


  
Poleward Shift of the Major Ocean Gyres Detected in a Warming Climate 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (5)
作者:  Yang, Hu;  Lohmann, Gerrit;  Krebs-Kanzow, Uta;  Ionita, Monica;  Shi, Xiaoxu;  Sidorenko, Dimitry;  Gong, Xun;  Chen, Xueen;  Gowan, Evan J.
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/02
Tectonic and paleogeographic controls on development of the Early-Middle Ordovician Shanganning carbonate platform, Ordos Basin, North China 期刊论文
AAPG BULLETIN, 2020, 104 (3) : 565-593
作者:  Hu, Chenlin;  Zhang, Yuanfu;  Jiang, Zaixing;  Wang, Min;  Han, Chao;  Algeo, Thomas J.
收藏  |  浏览/下载:11/0  |  提交时间:2020/05/13
Widespread warming trends in storm temperatures and snowpack fate across the Western United States 期刊论文
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (3)
作者:  Hu, J. Michelle;  Nolin, Anne W.
收藏  |  浏览/下载:6/0  |  提交时间:2020/07/02
snowpack  hydrology  climate  warming  
gamma delta T cells and adipocyte IL-17RC control fat innervation and thermogenesis 期刊论文
NATURE, 2020, 578 (7796) : 610-+
作者:  Staus, Dean P.;  Hu, Hongli;  Robertson, Michael J.;  Kleinhenz, Alissa L. W.;  Wingler, Laura M.;  Capel, William D.;  Latorraca, Naomi R.;  Lefkowitz, Robert J.;  Skiniotis, Georgios
收藏  |  浏览/下载:42/0  |  提交时间:2020/07/03

V gamma 6(+) V delta 1(+) gamma delta T cells control tolerance to cold by activating adipocyte IL-17RC and promoting sympathetic innervation of thermogenic adipose tissue in mice.


The sympathetic nervous system innervates peripheral organs to regulate their function and maintain homeostasis, whereas target cells also produce neurotrophic factors to promote sympathetic innervation(1,2). The molecular basis of this bi-directional communication remains to be fully determined. Here we use thermogenic adipose tissue from mice as a model system to show that T cells, specifically gamma delta T cells, have a crucial role in promoting sympathetic innervation, at least in part by driving the expression of TGF beta 1 in parenchymal cells via the IL-17 receptor C (IL-17RC). Ablation of IL-17RC specifically in adipose tissue reduces expression of TGF beta 1 in adipocytes, impairs local sympathetic innervation and causes obesity and other metabolic phenotypes that are consistent with defective thermogenesis  innervation can be fully rescued by restoring TGF beta 1 expression. Ablating gamma delta tau cells and the IL-17RC signalling pathway also impairs sympathetic innervation in other tissues such as salivary glands. These findings demonstrate coordination between T cells and parenchymal cells to regulate sympathetic innervation.


  
An unexpected catalyst dominates formation and radiative forcing of regional haze 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (8) : 3960-3966
作者:  Zhang, Fang;  Wang, Yuan;  Peng, Jianfei;  Chen, Lu;  Sun, Yele;  Duan, Lian;  Ge, Xinlei;  Li, Yixin;  Zhao, Jiayun;  Liu, Chao;  Zhang, Xiaochun;  Zhang, Gen;  Pan, Yuepeng;  Wang, Yuesi;  Zhang, Annie L.;  Ji, Yuemeng;  Wang, Gehui;  Hu, Min;  Molina, Mario J.;  Zhang, Renyi
收藏  |  浏览/下载:15/0  |  提交时间:2020/05/13
black carbon  air pollution  climate  multiphase chemistry  haze