GSTDTAP

浏览/检索结果: 共51条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Molecular architecture of lineage allocation and tissue organization in early mouse embryo (vol 572, 528, 2019) 期刊论文
NATURE, 2020, 577 (7791) : E6-E6
作者:  Peng, Guangdun;  Suo, Shengbao;  Cui, Guizhong;  Yu, Fang;  Wang, Ran;  Chen, Jun;  Chen, Shirui;  Liu, Zhiwen;  Chen, Guoyu;  Qian, Yun;  Tam, Patrick P. L.;  Han, Jing-Dong J.;  Jing, Naihe
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03
Millennial-scale hydroclimate control of tropical soil carbon storage 期刊论文
NATURE, 2020, 581 (7806) : 63-+
作者:  Lam, Tommy Tsan-Yuk;  Jia, Na;  Zhang, Ya-Wei;  Shum, Marcus Ho-Hin;  Jiang, Jia-Fu;  Zhu, Hua-Chen;  Tong, Yi-Gang;  Shi, Yong-Xia;  Ni, Xue-Bing;  Liao, Yun-Shi;  Li, Wen-Juan;  Jiang, Bao-Gui;  Wei, Wei;  Yuan, Ting-Ting;  Zheng, Kui;  Cui, Xiao-Ming;  Li, Jie;  Pei, Guang-Qian
收藏  |  浏览/下载:25/0  |  提交时间:2020/05/13

Over the past 18,000 years, the residence time and amount of soil carbon stored in the Ganges-Brahmaputra basin have been controlled by the intensity of Indian Summer Monsoon rainfall, with greater carbon destabilization during wetter, warmer conditions.


The storage of organic carbon in the terrestrial biosphere directly affects atmospheric concentrations of carbon dioxide over a wide range of timescales. Within the terrestrial biosphere, the magnitude of carbon storage can vary in response to environmental perturbations such as changing temperature or hydroclimate(1), potentially generating feedback on the atmospheric inventory of carbon dioxide. Although temperature controls the storage of soil organic carbon at mid and high latitudes(2,3), hydroclimate may be the dominant driver of soil carbon persistence in the tropics(4,5)  however, the sensitivity of tropical soil carbon turnover to large-scale hydroclimate variability remains poorly understood. Here we show that changes in Indian Summer Monsoon rainfall have controlled the residence time of soil carbon in the Ganges-Brahmaputra basin over the past 18,000 years. Comparison of radiocarbon ages of bulk organic carbon and terrestrial higher-plant biomarkers with co-located palaeohydrological records(6) reveals a negative relationship between monsoon rainfall and soil organic carbon stocks on a millennial timescale. Across the deglaciation period, a depletion of basin-wide soil carbon stocks was triggered by increasing rainfall and associated enhanced soil respiration rates. Our results suggest that future hydroclimate changes in tropical regions are likely to accelerate soil carbon destabilization, further increasing atmospheric carbon dioxide concentrations.


  
Generation of the 105-100 Ma Dagze volcanic rocks in the north Lhasa Terrane by lower crustal melting at different temperature and depth: Implications for tectonic transition 期刊论文
GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2020, 132 (5-6) : 1257-1272
作者:  Zeng, Yun-Chuan;  Xu, Ji-Feng;  Huang, Feng;  Li, Ming-Jian;  Chen, Qin
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
Insight Into Major Active Faults in Central Myanmar and the Related Geodynamic Sources 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (8)
作者:  Mon, Chit Thet;  Gong, Xuan;  Wen, Yun;  Jiang, Mingming;  Chen, Qi-Fu;  Zhang, Miao;  Hou, Guangbing;  Thant, Myo;  Sein, Kyaing;  He, Yumei
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/02
earthquake relocation  Myanmar crustal seismicity  Kabaw Fault Zone  Sagaing Fault  Central Basin  
Assessing the sensitivity of land-atmosphere coupling strength to boundary and surface layer parameters in the WRF model over Amazon 期刊论文
ATMOSPHERIC RESEARCH, 2020, 234
作者:  Wang, Chen;  Qian, Yun;  Duan, Qingyun;  Huang, Maoyi;  Berg, Larry K.;  Shin, Hyeyum H.;  Feng, Zhe;  Yang, Ben;  Quan, Jiping;  Hong, Songyou;  Yan, Junhua
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/02
L-A coupling strength  Amazon region  WRF model  Model uncertainties  Parameter sensitivity analysis  
Nanoplasma-enabled picosecond switches for ultrafast electronics (vol 579, pg 534, 2020) 期刊论文
NATURE, 2020, 580 (7803) : E8-E8
作者:  Li, Jing;  Xu, Chuanliang;  Lee, Hyung Joo;  Ren, Shancheng;  Zi, Xiaoyuan;  Zhang, Zhiming;  Wang, Haifeng;  Yu, Yongwei;  Yang, Chenghua;  Gao, Xiaofeng;  Hou, Jianguo;  Wang, Linhui;  Yang, Bo;  Yang, Qing;  Ye, Huamao;  Zhou, Tie;  Lu, Xin;  Wang, Yan;  Qu, Min;  Yang, Qingsong;  Zhang, Wenhui;  Shah, Nakul M.;  Pehrsson, Erica C.;  Wang, Shuo;  Wang, Zengjun;  Jiang, Jun;  Zhu, Yan;  Chen, Rui;  Chen, Huan;  Zhu, Feng;  Lian, Bijun;  Li, Xiaoyun;  Zhang, Yun;  Wang, Chao;  Wang, Yue;  Xiao, Guangan;  Jiang, Junfeng;  Yang, Yue;  Liang, Chaozhao;  Hou, Jianquan;  Han, Conghui;  Chen, Ming;  Jiang, Ning;  Zhang, Dahong;  Wu, Song;  Yang, Jinjian;  Wang, Tao;  Chen, Yongliang;  Cai, Jiantong;  Yang, Wenzeng;  Xu, Jun;  Wang, Shaogang;  Gao, Xu;  Wang, Ting;  Sun, Yinghao
收藏  |  浏览/下载:18/0  |  提交时间:2020/07/03
Recycling and metabolic flexibility dictate life in the lower oceanic crust 期刊论文
NATURE, 2020, 579 (7798) : 250-+
作者:  Zhou, Peng;  Yang, Xing-Lou;  Wang, Xian-Guang;  Hu, Ben;  Zhang, Lei;  Zhang, Wei;  Si, Hao-Rui;  Zhu, Yan;  Li, Bei;  Huang, Chao-Lin;  Chen, Hui-Dong;  Chen, Jing;  Luo, Yun;  Guo, Hua;  Jiang, Ren-Di;  Liu, Mei-Qin;  Chen, Ying;  Shen, Xu-Rui;  Wang, Xi;  Zheng, Xiao-Shuang;  Zhao, Kai;  Chen, Quan-Jiao;  Deng, Fei;  Liu, Lin-Lin;  Yan, Bing;  Zhan, Fa-Xian;  Wang, Yan-Yi;  Xiao, Geng-Fu;  Shi, Zheng-Li
收藏  |  浏览/下载:37/0  |  提交时间:2020/05/13

The lithified lower oceanic crust is one of Earth'  s last biological frontiers as it is difficult to access. It is challenging for microbiota that live in marine subsurface sediments or igneous basement to obtain sufficient carbon resources and energy to support growth(1-3) or to meet basal power requirements(4) during periods of resource scarcity. Here we show how limited and unpredictable sources of carbon and energy dictate survival strategies used by low-biomass microbial communities that live 10-750 m below the seafloor at Atlantis Bank, Indian Ocean, where Earth'  s lower crust is exposed at the seafloor. Assays of enzyme activities, lipid biomarkers, marker genes and microscopy indicate heterogeneously distributed and viable biomass with ultralow cell densities (fewer than 2,000 cells per cm(3)). Expression of genes involved in unexpected heterotrophic processes includes those with a role in the degradation of polyaromatic hydrocarbons, use of polyhydroxyalkanoates as carbon-storage molecules and recycling of amino acids to produce compounds that can participate in redox reactions and energy production. Our study provides insights into how microorganisms in the plutonic crust are able to survive within fractures or porous substrates by coupling sources of energy to organic and inorganic carbon resources that are probably delivered through the circulation of subseafloor fluids or seawater.


  
Nagaoka ferromagnetism observed in a quantum dot plaquette 期刊论文
NATURE, 2020, 579 (7800) : 528-533
作者:  Yu, Yong;  Ma, Fei;  Luo, Xi-Yu;  Jing, Bo;  Sun, Peng-Fei;  Fang, Ren-Zhou;  Yang, Chao-Wei;  Liu, Hui;  Zheng, Ming-Yang;  Xie, Xiu-Ping;  Zhang, Wei-Jun;  You, Li-Xing;  Wang, Zhen;  Chen, Teng-Yun;  Zhang, Qiang;  Bao, Xiao-Hui;  Pan, Jian-Wei
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

A quantum dot device designed to host four electrons is used to demonstrate Nagaoka ferromagnetism-a model of itinerant magnetism that has so far been limited to theoretical investigation.


Engineered, highly controllable quantum systems are promising simulators of emergent physics beyond the simulation capabilities of classical computers(1). An important problem in many-body physics is itinerant magnetism, which originates purely from long-range interactions of free electrons and whose existence in real systems has been debated for decades(2,3). Here we use a quantum simulator consisting of a four-electron-site square plaquette of quantum dots(4) to demonstrate Nagaoka ferromagnetism(5). This form of itinerant magnetism has been rigorously studied theoretically(6-9) but has remained unattainable in experiments. We load the plaquette with three electrons and demonstrate the predicted emergence of spontaneous ferromagnetic correlations through pairwise measurements of spin. We find that the ferromagnetic ground state is remarkably robust to engineered disorder in the on-site potentials and we can induce a transition to the low-spin state by changing the plaquette topology to an open chain. This demonstration of Nagaoka ferromagnetism highlights that quantum simulators can be used to study physical phenomena that have not yet been observed in any experimental system. The work also constitutes an important step towards large-scale quantum dot simulators of correlated electron systems.


  
Mechanism of adrenergic Ca(V)1.2 stimulation revealed by proximity proteomics 期刊论文
NATURE, 2020, 577 (7792) : 695-+
作者:  Peng, Guangdun;  Suo, Shengbao;  Cui, Guizhong;  Yu, Fang;  Wang, Ran;  Chen, Jun;  Chen, Shirui;  Liu, Zhiwen;  Chen, Guoyu;  Qian, Yun;  Tam, Patrick P. L.;  Han, Jing-Dong J.;  Jing, Naihe
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

An in vivo approach to identify proteins whose enrichment near cardiac Ca(V)1.2 channels changes upon beta-adrenergic stimulation finds the G protein Rad, which is phosphorylated by protein kinase A, thereby relieving channel inhibition by Rad and causing an increased Ca2+ current.


Increased cardiac contractility during the fight-or-flight response is caused by beta-adrenergic augmentation of Ca(V)1.2 voltage-gated calcium channels(1-4). However, this augmentation persists in transgenic murine hearts expressing mutant Ca(V)1.2 alpha(1C) and beta subunits that can no longer be phosphorylated by protein kinase A-an essential downstream mediator of beta-adrenergic signalling-suggesting that non-channel factors are also required. Here we identify the mechanism by which beta-adrenergic agonists stimulate voltage-gated calcium channels. We express alpha(1C) or beta(2B) subunits conjugated to ascorbate peroxidase(5) in mouse hearts, and use multiplexed quantitative proteomics(6,7) to track hundreds of proteins in the proximity of Ca(V)1.2. We observe that the calcium-channel inhibitor Rad(8,9), a monomeric G protein, is enriched in the Ca(V)1.2 microenvironment but is depleted during beta-adrenergic stimulation. Phosphorylation by protein kinase A of specific serine residues on Rad decreases its affinity for beta subunits and relieves constitutive inhibition of Ca(V)1.2, observed as an increase in channel open probability. Expression of Rad or its homologue Rem in HEK293T cells also imparts stimulation of Ca(V)1.3 and Ca(V)2.2 by protein kinase A, revealing an evolutionarily conserved mechanism that confers adrenergic modulation upon voltage-gated calcium channels.


  
H2A.Z facilitates licensing and activation of early replication origins (vol 35, pg 784, 2019) 期刊论文
NATURE, 2020, 578 (7793) : E8-E8
作者:  Cui, Jizhai;  Huang, Tian-Yun;  Luo, Zhaochu;  Testa, Paolo;  Gu, Hongri;  Chen, Xiang-Zhong;  Nelson, Bradley J.;  Heyderman, Laura J.
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03