GSTDTAP

浏览/检索结果: 共27条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Proton-assisted growth of ultra-flat graphene films 期刊论文
NATURE, 2020, 577 (7789) : 204-+
作者:  Yuan, Guowen;  Lin, Dongjing;  Wang, Yong;  Huang, Xianlei;  Chen, Wang;  Xie, Xuedong;  Zong, Junyu;  Yuan, Qian-Qian;  Zheng, Hang;  Wang, Di;  Xu, Jie;  Li, Shao-Chun;  Zhang, Yi;  Sun, Jian;  Xi, Xiaoxiang;  Gao, Libo
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Graphene films grown by chemical vapour deposition have unusual physical and chemical properties that offer promise for applications such as flexible electronics and high-frequency transistors(1-10). However, wrinkles invariably form during growth because of the strong coupling to the substrate, and these limit the large-scale homogeneity of the film(1-4,11,12). Here we develop a proton-assisted method of chemical vapour deposition to grow ultra-flat graphene films that are wrinkle-free. Our method of proton penetration(13-17) and recombination to form hydrogen can also reduce the wrinkles formed during traditional chemical vapour deposition of graphene. Some of the wrinkles disappear entirely, owing to the decoupling of van der Waals interactions and possibly an increase in distance from the growth surface. The electronic band structure of the as-grown graphene films shows a V-shaped Dirac cone and a linear dispersion relation within the atomic plane or across an atomic step, confirming the decoupling from the substrate. The ultra-flat nature of the graphene films ensures that their surfaces are easy to clean after a wet transfer process. A robust quantum Hall effect appears even at room temperature in a device with a linewidth of 100 micrometres. Graphene films grown by proton-assisted chemical vapour deposition should largely retain their intrinsic performance, and our method should be easily generalizable to other nanomaterials for strain and doping engineering.


  
Oncometabolites suppress DNA repair by disrupting local chromatin signalling 期刊论文
NATURE, 2020
作者:  Zhang, Xu;  Lei, Bo;  Yuan, Yuan;  Zhang, Li;  Hu, Lu;  Jin, Sen;  Kang, Bilin;  Liao, Xuebin;  Sun, Wenzhi;  Xu, Fuqiang;  Zhong, Yi;  Hu, Ji;  Qi, Hai
收藏  |  浏览/下载:23/0  |  提交时间:2020/07/03

Metabolites that are elevated in tumours inhibit the lysine demethylase KDM4B, resulting in aberrant hypermethylation of histone 3 lysine 9 and decreased homology-dependent DNA repair.


Deregulation of metabolism and disruption of genome integrity are hallmarks of cancer(1). Increased levels of the metabolites 2-hydroxyglutarate, succinate and fumarate occur in human malignancies owing to somatic mutations in the isocitrate dehydrogenase-1 or -2 (IDH1 or IDH2) genes, or germline mutations in the fumarate hydratase (FH) and succinate dehydrogenase genes (SDHA, SDHB, SDHC and SDHD), respectively(2-4). Recent work has made an unexpected connection between these metabolites and DNA repair by showing that they suppress the pathway of homology-dependent repair (HDR)(5,6) and confer an exquisite sensitivity to inhibitors of poly (ADP-ribose) polymerase (PARP) that are being tested in clinical trials. However, the mechanism by which these oncometabolites inhibit HDR remains poorly understood. Here we determine the pathway by which these metabolites disrupt DNA repair. We show that oncometabolite-induced inhibition of the lysine demethylase KDM4B results in aberrant hypermethylation of histone 3 lysine 9 (H3K9) at loci surrounding DNA breaks, masking a local H3K9 trimethylation signal that is essential for the proper execution of HDR. Consequently, recruitment of TIP60 and ATM, two key proximal HDR factors, is substantially impaired at DNA breaks, with reduced end resection and diminished recruitment of downstream repair factors. These findings provide a mechanistic basis for oncometabolite-induced HDR suppression and may guide effective strategies to exploit these defects for therapeutic gain.


  
Structure and mechanism of human diacylglycerol O-acyltransferase 1 期刊论文
NATURE, 2020, 581 (7808) : 329-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:24/0  |  提交时间:2020/07/03

The structure of human diacylglycerol O-acyltransferase 1, a membrane protein that synthesizes triacylglycerides, is solved with cryo-electron microscopy, providing insight into its function and mechanism of enzymatic activity.


Diacylglycerol O-acyltransferase 1 (DGAT1) synthesizes triacylglycerides and is required for dietary fat absorption and fat storage in humans(1). DGAT1 belongs to the membrane-bound O-acyltransferase (MBOAT) superfamily, members of which are found in all kingdoms of life and are involved in the acylation of lipids and proteins(2,3). How human DGAT1 and other mammalian members of the MBOAT family recognize their substrates and catalyse their reactions is unknown. The absence of three-dimensional structures also hampers rational targeting of DGAT1 for therapeutic purposes. Here we present the cryo-electron microscopy structure of human DGAT1 in complex with an oleoyl-CoA substrate. Each DGAT1 protomer has nine transmembrane helices, eight of which form a conserved structural fold that we name the MBOAT fold. The MBOAT fold in DGAT1 forms a hollow chamber in the membrane that encloses highly conserved catalytic residues. The chamber has separate entrances for each of the two substrates, fatty acyl-CoA and diacylglycerol. DGAT1 can exist as either a homodimer or a homotetramer and the two forms have similar enzymatic activity. The N terminus of DGAT1 interacts with the neighbouring protomer and these interactions are required for enzymatic activity.


  
The online competition between pro- and anti-vaccination views 期刊论文
NATURE, 2020, 582 (7811) : 230-+
作者:  Wu, Fan;  Zhao, Su;  Yu, Bin;  Chen, Yan-Mei;  Wang, Wen;  Song, Zhi-Gang;  Hu, Yi;  Tao, Zhao-Wu;  Tian, Jun-Hua;  Pei, Yuan-Yuan;  Yuan, Ming-Li;  Zhang, Yu-Ling;  Dai, Fa-Hui;  Liu, Yi;  Wang, Qi-Min;  Zheng, Jiao-Jiao;  Xu, Lin;  Holmes, Edward C.;  Zhang, Yong-Zhen
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Insights into the interactions between pro- and anti-vaccination clusters on Facebook can enable policies and approaches that attempt to interrupt the shift to anti-vaccination views and persuade undecided individuals to adopt a pro-vaccination stance.


Distrust in scientific expertise(1-14) is dangerous. Opposition to vaccination with a future vaccine against SARS-CoV-2, the causal agent of COVID-19, for example, could amplify outbreaks(2-4), as happened for measles in 2019(5,6). Homemade remedies(7,8) and falsehoods are being shared widely on the Internet, as well as dismissals of expert advice(9-11). There is a lack of understanding about how this distrust evolves at the system level(13,14). Here we provide a map of the contention surrounding vaccines that has emerged from the global pool of around three billion Facebook users. Its core reveals a multi-sided landscape of unprecedented intricacy that involves nearly 100 million individuals partitioned into highly dynamic, interconnected clusters across cities, countries, continents and languages. Although smaller in overall size, anti-vaccination clusters manage to become highly entangled with undecided clusters in the main online network, whereas pro-vaccination clusters are more peripheral. Our theoretical framework reproduces the recent explosive growth in anti-vaccination views, and predicts that these views will dominate in a decade. Insights provided by this framework can inform new policies and approaches to interrupt this shift to negative views. Our results challenge the conventional thinking about undecided individuals in issues of contention surrounding health, shed light on other issues of contention such as climate change(11), and highlight the key role of network cluster dynamics in multi-species ecologies(15).


  
Action of a minimal contractile bactericidal nanomachine 期刊论文
NATURE, 2020, 580 (7805) : 658-+
作者:  Peng, Ruchao;  Xu, Xin;  Jing, Jiamei;  Wang, Min;  Peng, Qi;  Liu, Sheng;  Wu, Ying;  Bao, Xichen;  Wang, Peiyi;  Qi, Jianxun;  Gao, George F.;  Shi, Yi
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

The authors report near-atomic resolution structures of the R-type bacteriocin from Pseudomonas aeruginosa in the pre-contraction and post-contraction states, and these structures provide insight into the mechanism of action of molecular syringes.


R-type bacteriocins are minimal contractile nanomachines that hold promise as precision antibiotics(1-4). Each bactericidal complex uses a collar to bridge a hollow tube with a contractile sheath loaded in a metastable state by a baseplate scaffold(1,2). Fine-tuning of such nucleic acid-free protein machines for precision medicine calls for an atomic description of the entire complex and contraction mechanism, which is not available from baseplate structures of the (DNA-containing) T4 bacteriophage(5). Here we report the atomic model of the complete R2 pyocin in its pre-contraction and post-contraction states, each containing 384 subunits of 11 unique atomic models of 10 gene products. Comparison of these structures suggests the following sequence of events during pyocin contraction: tail fibres trigger lateral dissociation of baseplate triplexes  the dissociation then initiates a cascade of events leading to sheath contraction  and this contraction converts chemical energy into mechanical force to drive the iron-tipped tube across the bacterial cell surface, killing the bacterium.


  
Recycling and metabolic flexibility dictate life in the lower oceanic crust 期刊论文
NATURE, 2020, 579 (7798) : 250-+
作者:  Zhou, Peng;  Yang, Xing-Lou;  Wang, Xian-Guang;  Hu, Ben;  Zhang, Lei;  Zhang, Wei;  Si, Hao-Rui;  Zhu, Yan;  Li, Bei;  Huang, Chao-Lin;  Chen, Hui-Dong;  Chen, Jing;  Luo, Yun;  Guo, Hua;  Jiang, Ren-Di;  Liu, Mei-Qin;  Chen, Ying;  Shen, Xu-Rui;  Wang, Xi;  Zheng, Xiao-Shuang;  Zhao, Kai;  Chen, Quan-Jiao;  Deng, Fei;  Liu, Lin-Lin;  Yan, Bing;  Zhan, Fa-Xian;  Wang, Yan-Yi;  Xiao, Geng-Fu;  Shi, Zheng-Li
收藏  |  浏览/下载:37/0  |  提交时间:2020/05/13

The lithified lower oceanic crust is one of Earth'  s last biological frontiers as it is difficult to access. It is challenging for microbiota that live in marine subsurface sediments or igneous basement to obtain sufficient carbon resources and energy to support growth(1-3) or to meet basal power requirements(4) during periods of resource scarcity. Here we show how limited and unpredictable sources of carbon and energy dictate survival strategies used by low-biomass microbial communities that live 10-750 m below the seafloor at Atlantis Bank, Indian Ocean, where Earth'  s lower crust is exposed at the seafloor. Assays of enzyme activities, lipid biomarkers, marker genes and microscopy indicate heterogeneously distributed and viable biomass with ultralow cell densities (fewer than 2,000 cells per cm(3)). Expression of genes involved in unexpected heterotrophic processes includes those with a role in the degradation of polyaromatic hydrocarbons, use of polyhydroxyalkanoates as carbon-storage molecules and recycling of amino acids to produce compounds that can participate in redox reactions and energy production. Our study provides insights into how microorganisms in the plutonic crust are able to survive within fractures or porous substrates by coupling sources of energy to organic and inorganic carbon resources that are probably delivered through the circulation of subseafloor fluids or seawater.


  
Global conservation of species' niches 期刊论文
NATURE, 2020, 580 (7802) : 232-+
作者:  Guo, Xiaoyan;  Aviles, Giovanni;  Liu, Yi;  Tian, Ruilin;  Unger, Bret A.;  Lin, Yu-Hsiu T.;  Wiita, Arun P.;  Xu, Ke;  Correia, M. Almira;  Kampmann, Martin
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

Environmental change is rapidly accelerating, and many species will need to adapt to survive(1). Ensuring that protected areas cover populations across a broad range of environmental conditions could safeguard the processes that lead to such adaptations(1-3). However, international conservation policies have largely neglected these considerations when setting targets for the expansion of protected areas(4). Here we show that-of 19,937 vertebrate species globally(5-8)-the representation of environmental conditions across their habitats in protected areas (hereafter, niche representation) is inadequate for 4,836 (93.1%) amphibian, 8,653 (89.5%) bird and 4,608 (90.9%) terrestrial mammal species. Expanding existing protected areas to cover these gaps would encompass 33.8% of the total land surface-exceeding the current target of 17% that has been adopted by governments. Priority locations for expanding the system of protected areas to improve niche representation occur in global biodiversity hotspots(9), including Colombia, Papua New Guinea, South Africa and southwest China, as well as across most of the major land masses of the Earth. Conversely, we also show that planning for the expansion of protected areas without explicitly considering environmental conditions would marginally reduce the land area required to 30.7%, but that this would lead to inadequate niche representation for 7,798 (39.1%) species. As the governments of the world prepare to renegotiate global conservation targets, policymakers have the opportunity to help to maintain the adaptive potential of species by considering niche representation within protected areas(1,2).


Protected areas would need to expand to 33.8% of the total land surface to adequately represent environmental conditions across the habitats of amphibians, birds and terrestrial mammals, far exceeding the current 17% target.


  
Centrosome anchoring regulates progenitor properties and cortical formation 期刊论文
NATURE, 2020
作者:  Guo, Xiaoyan;  Aviles, Giovanni;  Liu, Yi;  Tian, Ruilin;  Unger, Bret A.;  Lin, Yu-Hsiu T.;  Wiita, Arun P.;  Xu, Ke;  Correia, M. Almira;  Kampmann, Martin
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

CEP83-mediated anchoring of the centrosome to the apical membrane in radial glial progenitor cells regulates their mechanical properties and thereby influences the size and configuration of the mammalian cortex.


Radial glial progenitor cells (RGPs) are the major neural progenitor cells that generate neurons and glia in the developing mammalian cerebral cortex(1-4). In RGPs, the centrosome is positioned away from the nucleus at the apical surface of the ventricular zone of the cerebral cortex(5-8). However, the molecular basis and precise function of this distinctive subcellular organization of the centrosome are largely unknown. Here we show in mice that anchoring of the centrosome to the apical membrane controls the mechanical properties of cortical RGPs, and consequently their mitotic behaviour and the size and formation of the cortex. The mother centriole in RGPs develops distal appendages that anchor it to the apical membrane. Selective removal of centrosomal protein 83 (CEP83) eliminates these distal appendages and disrupts the anchorage of the centrosome to the apical membrane, resulting in the disorganization of microtubules and stretching and stiffening of the apical membrane. The elimination of CEP83 also activates the mechanically sensitive yes-associated protein (YAP) and promotes the excessive proliferation of RGPs, together with a subsequent overproduction of intermediate progenitor cells, which leads to the formation of an enlarged cortex with abnormal folding. Simultaneous elimination of YAP suppresses the cortical enlargement and folding that is induced by the removal of CEP83. Together, these results indicate a previously unknown role of the centrosome in regulating the mechanical features of neural progenitor cells and the size and configuration of the mammalian cerebral cortex.


  
Negative supercoil at gene boundaries modulates gene topology 期刊论文
NATURE, 2020, 577 (7792) : 701-+
作者:  Yuan, Guowen;  Lin, Dongjing;  Wang, Yong;  Huang, Xianlei;  Chen, Wang;  Xie, Xuedong;  Zong, Junyu;  Yuan, Qian-Qian;  Zheng, Hang;  Wang, Di;  Xu, Jie;  Li, Shao-Chun;  Zhang, Yi;  Sun, Jian;  Xi, Xiaoxiang;  Gao, Libo
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Transcription challenges the integrity of replicating chromosomes by generating topological stress and conflicts with forks(1,2). The DNA topoisomerases Top1 and Top2 and the HMGB family protein Hmo1 assist DNA replication and transcription(3-6). Here we describe the topological architecture of genes in Saccharomyces cerevisiae during the G1 and S phases of the cell cycle. We found under-wound DNA at gene boundaries and over-wound DNA within coding regions. This arrangement does not depend on Pol II or S phase. Top2 and Hmo1 preserve negative supercoil at gene boundaries, while Top1 acts at coding regions. Transcription generates RNA-DNA hybrids within coding regions, independently of fork orientation. During S phase, Hmo1 protects under-wound DNA from Top2, while Top2 confines Pol II and Top1 at coding units, counteracting transcription leakage and aberrant hybrids at gene boundaries. Negative supercoil at gene boundaries prevents supercoil diffusion and nucleosome repositioning at coding regions. DNA looping occurs at Top2 clusters. We propose that Hmo1 locks gene boundaries in a cruciform conformation and, with Top2, modulates the architecture of genes that retain the memory of the topological arrangements even when transcription is repressed.


  
A genome-wide association study identifies six novel risk loci for primary biliary cholangitis 期刊论文
NATURE COMMUNICATIONS, 2017, 8
作者:  Qiu, Fang;  Tang, Ruqi;  Zuo, Xianbo;  Shi, Xingjuan;  Wei, Yiran;  Zheng, Xiaodong;  Dai, Yaping;  Gong, Yuhua;  Wang, Lan;  Xu, Ping;  Zhu, Xiang;  Wu, Jian;  Han, Chongxu;  Gao, Yueqiu;  Zhang, Kui;  Jiang, Yuzhang;  Zhou, Jianbo;  Shao, Youlin;  Hu, Zhigang;  Tian, Ye;  Zhang, Haiyan;  Dai, Na;  Liu, Lei;  Wu, Xudong;  Zhao, Weifeng;  Zhang, Xiaomin;  Zang, Zhidong;  Nie, Jinshan;  Sun, Weihao;  Zhao, Yi;  Mao, Yuan;  Jiang, Po;  Ji, Hualiang;  Dong, Qing;  Li, Junming;  Li, Zhenzhong;  Bai, Xinli;  Li, Li;  Lin, Maosong;  Dong, Ming;  Li, Jinxin;  Zhu, Ping;  Wang, Chan;  Zhang, Yanqiu;  Jiang, Peng;  Wang, Yujue;  Jawed, Rohil;  Xu, Jing;  Zhang, Yu;  Wang, Qixia;  Yang, Yue;  Yang, Fan;  Lian, Min;  Jiang, Xiang;  Xiao, Xiao;  Li, Yanmei;  Fang, Jingyuan;  Qiu, Dekai;  Zhu, Zhen;  Qiu, Hong;  Zhang, Jianqiong;  Tian, Wenyan;  Chen, Sufang;  Jiang, Ling;  Ji, Bing;  Li, Ping;  Chen, Guochang;  Wu, Tianxue;  Sun, Yan;  Yu, Jianjiang;  Tang, Huijun;  He, Michun;  Xia, Min;  Pei, Hao;  Huang, Lihua;  Qing, Zhuye;  Wu, Jianfang;  Huang, Qinghai;  Han, Junhai;  Xie, Wei;  Sun, Zhongsheng;  Guo, Jian;  He, Gengsheng;  Gershwin, M. Eric;  Lian, Zhexiong;  Liu, Xiang;  Seldin, Michael F.;  Liu, Xiangdong;  Chen, Weichang;  Ma, Xiong
收藏  |  浏览/下载:18/0  |  提交时间:2019/11/27