GSTDTAP

浏览/检索结果: 共23条,第1-10条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Mapping pollution exposure and chemistry during an extreme air quality event (the 2018 Kīlauea eruption) using a low-cost sensor network 期刊论文
Proceedings of the National Academy of Science, 2021
作者:  Ben Crawford;  David H. Hagan;  Ilene Grossman;  Elizabeth Cole;  Lacey Holland;  Colette L. Heald;  Jesse H. Kroll
收藏  |  浏览/下载:8/0  |  提交时间:2021/07/27
The impact of improved air-quality due to COVID-19 lockdown on surface meteorological parameters and planetary boundary layer over Gadanki, a tropical rural site in India 期刊论文
Atmospheric Research, 2021
作者:  S. Satheesh Kumar, T. Narayana Rao
收藏  |  浏览/下载:14/0  |  提交时间:2021/07/27
A 10-year study on the lightning activity in Italy using data from the SIRF network 期刊论文
Atmospheric Research, 2021
作者:  Martino Nicora, Daniele Mestriner, Massimo Brignone, Marina Bernardi, ... Elisabetta Fiori
收藏  |  浏览/下载:1/0  |  提交时间:2021/03/12
Reductions in NO2 burden over north equatorial Africa from decline in biomass burning in spite of growing fossil fuel use, 2005 to 2017 期刊论文
Proceedings of the National Academy of Science, 2021
作者:  Jonathan E. Hickman;  Niels Andela;  Kostas Tsigaridis;  Corinne Galy-Lacaux;  Money Ossohou;  Susanne E. Bauer
收藏  |  浏览/下载:8/0  |  提交时间:2021/02/17
Estimating hourly surface PM2.5 concentrations across China from high-density meteorological observations by machine learning 期刊论文
Atmospheric Research, 2021
作者:  Zhaoliang Zeng, Ke Gui, Zemin Wang, Ming Luo, ... Haizhi Liu
收藏  |  浏览/下载:7/0  |  提交时间:2021/02/17
Reviewing global estimates of surface reactive nitrogen concentration and deposition using satellite retrievals 期刊论文
Atmospheric Chemistry and Physics, 2020
作者:  Lei Liu, Xiuying Zhang, Wen Xu, Xuejun Liu, Xuehe Lu, Jing Wei, Yi Li, Yuyu Yang, Zhen Wang, and Anthony Y. H. Wong
收藏  |  浏览/下载:14/0  |  提交时间:2020/08/09
Anti-PfGARP activates programmed cell death of parasites and reduces severe malaria 期刊论文
NATURE, 2020
作者:  Rauch, Jennifer N.;  Luna, Gabriel;  Guzman, Elmer;  Audouard, Morgane;  Challis, Collin;  Sibih, Youssef E.;  Leshuk, Carolina;  Hernandez, Israel;  Wegmann, Susanne;  Hyman, Bradley T.;  Gradinaru, Viviana;  Kampmann, Martin;  Kosik, Kenneth S.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Malaria caused by Plasmodium falciparum remains the leading single-agent cause of mortality in children(1), yet the promise of an effective vaccine has not been fulfilled. Here, using our previously described differential screening method to analyse the proteome of blood-stage P. falciparum parasites(2), we identify P. falciparum glutamic-acid-rich protein (PfGARP) as a parasite antigen that is recognized by antibodies in the plasma of children who are relatively resistant-but not those who are susceptible-to malaria caused by P. falciparum. PfGARP is a parasite antigen of 80 kDa that is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites. We demonstrate that antibodies against PfGARP kill trophozoite-infected erythrocytes in culture by inducing programmed cell death in the parasites, and that vaccinating non-human primates with PfGARP partially protects against a challenge with P. falciparum. Furthermore, our longitudinal cohort studies showed that, compared to individuals who had naturally occurring anti-PfGARP antibodies, Tanzanian children without anti-PfGARP antibodies had a 2.5-fold-higher risk of severe malaria and Kenyan adolescents and adults without these antibodies had a twofold-higher parasite density. By killing trophozoite-infected erythrocytes, PfGARP could synergize with other vaccines that target parasite invasion of hepatocytes or the invasion of and egress from erythrocytes.


Antibodies against Plasmodium falciparum glutamic-acid-rich protein (PfGARP), an antigen expressed on the surface of infected red blood cells, kill P. falciparum parasites by inducing programmed cell death and reduce the risk of severe malaria.


  
A biomimetic eye with a hemispherical perovskite nanowire array retina 期刊论文
NATURE, 2020, 581 (7808) : 278-+
作者:  Hueckel, Theodore;  Hocky, Glen M.;  Palacci, Jeremie;  Sacanna, Stefano
收藏  |  浏览/下载:70/0  |  提交时间:2020/07/03

A biomimetic electrochemical eye is presented that has a hemispherical retina made from a high-density array of perovskite nanowires that are sensitive to light, mimicking the photoreceptors of a biological retina.


Human eyes possess exceptional image-sensing characteristics such as an extremely wide field of view, high resolution and sensitivity with low aberration(1). Biomimetic eyes with such characteristics are highly desirable, especially in robotics and visual prostheses. However, the spherical shape and the retina of the biological eye pose an enormous fabrication challenge for biomimetic devices(2,3). Here we present an electrochemical eye with a hemispherical retina made of a high-density array of nanowires mimicking the photoreceptors on a human retina. The device design has a high degree of structural similarity to a human eye with the potential to achieve high imaging resolution when individual nanowires are electrically addressed. Additionally, we demonstrate the image-sensing function of our biomimetic device by reconstructing the optical patterns projected onto the device. This work may lead to biomimetic photosensing devices that could find use in a wide spectrum of technological applications.


  
Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme 期刊论文
NATURE, 2020, 581 (7808) : 323-+
作者:  Nikoo, Mohammad Samizadeh;  Jafari, Armin;  Perera, Nirmana;  Zhu, Minghua;  Santoruvo, Giovanni;  Matioli, Elison
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

Triacylglycerols store metabolic energy in organisms and have industrial uses as foods and fuels. Excessive accumulation of triacylglycerols in humans causes obesity and is associated with metabolic diseases(1). Triacylglycerol synthesis is catalysed by acyl-CoA diacylglycerol acyltransferase (DGAT) enzymes(2-4), the structures and catalytic mechanisms of which remain unknown. Here we determined the structure of dimeric human DGAT1, a member of the membrane-bound O-acyltransferase (MBOAT) family, by cryo-electron microscopy at approximately 3.0 angstrom resolution. DGAT1 forms a homodimer through N-terminal segments and a hydrophobic interface, with putative active sites within the membrane region. A structure obtained with oleoyl-CoA substrate resolved at approximately 3.2 angstrom shows that the CoA moiety binds DGAT1 on the cytosolic side and the acyl group lies deep within a hydrophobic channel, positioning the acyl-CoA thioester bond near an invariant catalytic histidine residue. The reaction centre is located inside a large cavity, which opens laterally to the membrane bilayer, providing lipid access to the active site. A lipid-like density-possibly representing an acyl-acceptor molecule-is located within the reaction centre, orthogonal to acyl-CoA. Insights provided by the DGAT1 structures, together with mutagenesis and functional studies, provide the basis for a model of the catalysis of triacylglycerol synthesis by DGAT.


Cryo-electron microscopy structures and functional and mutagenesis studies provide insights into the catalysis of triacylglycerol synthesis by human acyl-CoA diacylglycerol acyltransferase at its intramembrane active site.


  
LRP1 is a master regulator of tau uptake and spread 期刊论文
NATURE, 2020, 580 (7803) : 381-+
作者:  Han, Yan;  Reyes, Alexis A.;  Malik, Sara;  He, Yuan
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

The spread of protein aggregates during disease progression is a common theme underlying many neurodegenerative diseases. The microtubule-associated protein tau has a central role in the pathogenesis of several forms of dementia known as tauopathies-including Alzheimer'  s disease, frontotemporal dementia and chronic traumatic encephalopathy(1). Progression of these diseases is characterized by the sequential spread and deposition of protein aggregates in a predictable pattern that correlates with clinical severity(2). This observation and complementary experimental studies(3,4) have suggested that tau can spread in a prion-like manner, by passing to naive cells in which it templates misfolding and aggregation. However, although the propagation of tau has been extensively studied, the underlying cellular mechanisms remain poorly understood. Here we show that the low-density lipoprotein receptor-related protein 1 (LRP1) controls the endocytosis of tau and its subsequent spread. Knockdown of LRP1 significantly reduced tau uptake in H4 neuroglioma cells and in induced pluripotent stem cell-derived neurons. The interaction between tau and LRP1 is mediated by lysine residues in the microtubule-binding repeat region of tau. Furthermore, downregulation of LRP1 in an in vivo mouse model of tau spread was found to effectively reduce the propagation of tau between neurons. Our results identify LRP1 as a key regulator of tau spread in the brain, and therefore a potential target for the treatment of diseases that involve tau spread and aggregation.