GSTDTAP

浏览/检索结果: 共124条,第1-10条 帮助

限定条件                            
已选(0)清除 条数/页:   排序方式:
Nearest neighbours reveal fast and slow components of motor learning 期刊论文
NATURE, 2020, 577 (7791) : 526-+
作者:  Kollmorgen, Sepp;  Hahnloser, Richard H. R.;  Mante, Valerio
收藏  |  浏览/下载:4/0  |  提交时间:2020/07/03

A new method for analysing change in high-dimensional data is based on nearest-neighbour statistics and is applied here to song dynamics during vocal learning in zebra finches, but could potentially be applied to other biological and artificial behaviours.


Changes in behaviour resulting from environmental influences, development and learning(1-5) are commonly quantified on the basis of a few hand-picked features(2-4,6,7) (for example, the average pitch of acoustic vocalizations(3)), assuming discrete classes of behaviours (such as distinct vocal syllables)(2,3,8-10). However, such methods generalize poorly across different behaviours and model systems and may miss important components of change. Here we present a more-general account of behavioural change that is based on nearest-neighbour statistics(11-13), and apply it to song development in a songbird, the zebra finch(3). First, we introduce the concept of '  repertoire dating'  , whereby each rendition of a behaviour (for example, each vocalization) is assigned a repertoire time, reflecting when similar renditions were typical in the behavioural repertoire. Repertoire time isolates the components of vocal variability that are congruent with long-term changes due to vocal learning and development, and stratifies the behavioural repertoire into '  regressions'  , '  anticipations'  and '  typical renditions'  . Second, we obtain a holistic, yet low-dimensional, description of vocal change in terms of a stratified '  behavioural trajectory'  , revealing numerous previously unrecognized components of behavioural change on fast and slow timescales, as well as distinct patterns of overnight consolidation(1,2,4,14,15) across the behavioral repertoire. We find that diurnal changes in regressions undergo only weak consolidation, whereas anticipations and typical renditions consolidate fully. Because of its generality, our nonparametric description of how behaviour evolves relative to itself-rather than to a potentially arbitrary, experimenter-defined goal(2,3,14,16)-appears well suited for comparing learning and change across behaviours and species(17,18), as well as biological and artificial systems(5).


  
Protein-structure prediction gets real 期刊论文
NATURE, 2020, 577 (7792) : 627-628
作者:  Pillai, Arvind S.;  Chandler, Shane A.;  Liu, Yang;  Signor, Anthony, V;  Cortez-Romero, Carlos R.;  Benesch, Justin L. P.;  Laganowsky, Arthur;  Storz, Jay F.;  Hochberg, Georg K. A.;  Thornton, Joseph W.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Two threads of research in the quest for methods that predict the 3D structures of proteins from their amino-acid sequences have become fully intertwined. The result is a leap forward in the accuracy of predictions.


  
Preparation of cyclohexene isotopologues and stereoisotopomers from benzene 期刊论文
NATURE, 2020, 581 (7808) : 288-+
作者:  Shimazaki, Yuya;  Schwartz, Ido;  Watanabe, Kenji;  Taniguchi, Takashi;  Kroner, Martin;  Imamoglu, Atac
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

The hydrogen isotopes deuterium (D) and tritium (T) have become essential tools in chemistry, biology and medicine(1). Beyond their widespread use in spectroscopy, mass spectrometry and mechanistic and pharmacokinetic studies, there has been considerable interest in incorporating deuterium into drug molecules(1). Deutetrabenazine, a deuterated drug that is promising for the treatment of Huntington'  s disease(2), was recently approved by the United States'  Food and Drug Administration. The deuterium kinetic isotope effect, which compares the rate of a chemical reaction for a compound with that for its deuterated counterpart, can be substantial(1,3,4). The strategic replacement of hydrogen with deuterium can affect both the rate of metabolism and the distribution of metabolites for a compound(5), improving the efficacy and safety of a drug. The pharmacokinetics of a deuterated compound depends on the location(s) of deuterium. Although methods are available for deuterium incorporation at both early and late stages of the synthesis of a drug(6,7), these processes are often unselective and the stereoisotopic purity can be difficult to measure(7,8). Here we describe the preparation of stereoselectively deuterated building blocks for pharmaceutical research. As a proof of concept, we demonstrate a four-step conversion of benzene to cyclohexene with varying degrees of deuterium incorporation, via binding to a tungsten complex. Using different combinations of deuterated and proteated acid and hydride reagents, the deuterated positions on the cyclohexene ring can be controlled precisely. In total, 52 unique stereoisotopomers of cyclohexene are available, in the form of ten different isotopologues. This concept can be extended to prepare discrete stereoisotopomers of functionalized cyclohexenes. Such systematic methods for the preparation of pharmacologically active compounds as discrete stereoisotopomers could improve the pharmacological and toxicological properties of drugs and provide mechanistic information related to their distribution and metabolism in the body.


Cyclohexene isotopologues and stereoisotopomers with varying degrees of deuteration are formed by binding a tungsten complex to benzene, which facilitates the selective incorporation of deuterium into any position on the ring.


  
Quantum entanglement between an atom and a molecule 期刊论文
NATURE, 2020, 581 (7808) : 273-+
作者:  Trisos, Christopher H.;  Merow, Cory;  Pigot, Alex L.
收藏  |  浏览/下载:30/0  |  提交时间:2020/07/03

Conventional information processors convert information between different physical carriers for processing, storage and transmission. It seems plausible that quantum information will also be held by different physical carriers in applications such as tests of fundamental physics, quantum enhanced sensors and quantum information processing. Quantum controlled molecules, in particular, could transduce quantum information across a wide range of quantum bit (qubit) frequencies-from a few kilohertz for transitions within the same rotational manifold(1), a few gigahertz for hyperfine transitions, a few terahertz for rotational transitions, to hundreds of terahertz for fundamental and overtone vibrational and electronic transitions-possibly all within the same molecule. Here we demonstrate entanglement between the rotational states of a (CaH+)-Ca-40 molecular ion and the internal states of a Ca-40(+) atomic ion(2). We extend methods used in quantum logic spectroscopy(1,3) for pure-state initialization, laser manipulation and state readout of the molecular ion. The quantum coherence of the Coulomb coupled motion between the atomic and molecular ions enables subsequent entangling manipulations. The qubit addressed in the molecule has a frequency of either 13.4 kilohertz(1) or 855 gigahertz(3), highlighting the versatility of molecular qubits. Our work demonstrates how molecules can transduce quantum information between qubits with different frequencies to enable hybrid quantum systems. We anticipate that our method of quantum control and measurement of molecules will find applications in quantum information science, quantum sensors, fundamental and applied physics, and controlled quantum chemistry.


Quantum entanglement is realized between rotational levels of a molecular ion with energy differences spanning several orders of magnitude and long-lived internal states of a single atomic ion.


  
Extant timetrees are consistent with a myriad of diversification histories 期刊论文
NATURE, 2020, 580 (7804) : 502-+
作者:  Bhaskar, M. K.;  Riedinger, R.;  Machielse, B.;  Levonian, D. S.;  Nguyen, C. T.;  Knall, E. N.;  Park, H.;  Englund, D.;  Loncar, M.;  Sukachev, D. D.;  Lukin, M. D.
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

An infinite number of alternative diversification scenarios-which may have markedly different, but equally plausible, dynamics-can underpin a given time-calibrated phylogeny of extant species, suggesting many previous studies have over-interpreted phylogenetic evidence.


Time-calibrated phylogenies of extant species (referred to here as '  extant timetrees'  ) are widely used for estimating diversification dynamics(1). However, there has been considerable debate surrounding the reliability of these inferences(2-5) and, to date, this critical question remains unresolved. Here we clarify the precise information that can be extracted from extant timetrees under the generalized birth-death model, which underlies most existing methods of estimation. We prove that, for any diversification scenario, there exists an infinite number of alternative diversification scenarios that are equally likely to have generated any given extant timetree. These '  congruent'  scenarios cannot possibly be distinguished using extant timetrees alone, even in the presence of infinite data. Importantly, congruent diversification scenarios can exhibit markedly different and yet similarly plausible dynamics, which suggests that many previous studies may have over-interpreted phylogenetic evidence. We introduce identifiable and easily interpretable variables that contain all available information about past diversification dynamics, and demonstrate that these can be estimated from extant timetrees. We suggest that measuring and modelling these identifiable variables offers a more robust way to study historical diversification dynamics. Our findings also make it clear that palaeontological data will continue to be crucial for answering some macroevolutionary questions.


  
Late-stage oxidative C(sp(3))-H methylation 期刊论文
NATURE, 2020, 580 (7805) : 621-+
作者:  Fessler, Evelyn;  Eckl, Eva-Maria;  Schmitt, Sabine;  Mancilla, Igor Alves;  Meyer-Bender, Matthias F.;  Hanf, Monika;  Philippou-Massier, Julia;  Krebs, Stefan;  Zischka, Hans;  Jae, Lucas T.
收藏  |  浏览/下载:46/0  |  提交时间:2020/07/03

Frequently referred to as the '  magic methyl effect'  , the installation of methyl groups-especially adjacent (alpha) to heteroatoms-has been shown to dramatically increase the potency of biologically active molecules(1-3). However, existing methylation methods show limited scope and have not been demonstrated in complex settings(1). Here we report a regioselective and chemoselective oxidative C(sp(3))-H methylation method that is compatible with late-stage functionalization of drug scaffolds and natural products. This combines a highly site-selective and chemoselective C-H hydroxylation with a mild, functional-group-tolerant methylation. Using a small-molecule manganese catalyst, Mn(CF3PDP), at low loading (at a substrate/catalyst ratio of 200) affords targeted C-H hydroxylation on heterocyclic cores, while preserving electron-neutral and electron-rich aryls. Fluorine- or Lewis-acid-assisted formation of reactive iminium or oxonium intermediates enables the use of a mildly nucleophilic organoaluminium methylating reagent that preserves other electrophilic functionalities on the substrate. We show this late-stage C(sp(3))-H methylation on 41 substrates housing 16 different medicinally important cores that include electron-rich aryls, heterocycles, carbonyls and amines. Eighteen pharmacologically relevant molecules with competing sites-including drugs (for example, tedizolid) and natural products-are methylated site-selectively at the most electron rich, least sterically hindered position. We demonstrate the syntheses of two magic methyl substrates-an inverse agonist for the nuclear receptor RORc and an antagonist of the sphingosine-1-phosphate receptor-1-via late-stage methylation from the drug or its advanced precursor. We also show a remote methylation of the B-ring carbocycle of an abiraterone analogue. The ability to methylate such complex molecules at late stages will reduce synthetic effort and thereby expedite broader exploration of the magic methyl effect in pursuit of new small-molecule therapeutics and chemical probes.


A manganese-catalysed oxidative C(sp(3))-H methylation method allows a methyl group to be selectively installed into medicinally important heterocycles, providing a way to improve pharmaceuticals and better understand the '  magic methyl effect'  .


  
Deep learning takes on tumours 期刊论文
NATURE, 2020, 580 (7804) : 551-553
作者:  Dance, Amber
收藏  |  浏览/下载:0/0  |  提交时间:2020/07/03

Artificial-intelligence methods are moving into cancer research.


Artificial-intelligence methods are moving into cancer research.


  
In situ NMR metrology reveals reaction mechanisms in redox flow batteries 期刊论文
NATURE, 2020, 579 (7798) : 224-+
作者:  Ma, Jianfei;  You, Xin;  Sun, Shan;  Wang, Xiaoxiao;  Qin, Song;  Sui, Sen-Fang
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

Large-scale energy storage is becoming increasingly critical to balancing renewable energy production and consumption(1). Organic redox flow batteries, made from inexpensive and sustainable redox-active materials, are promising storage technologies that are cheaper and less environmentally hazardous than vanadium-based batteries, but they have shorter lifetimes and lower energy density(2,3). Thus, fundamental insight at the molecular level is required to improve performance(4,5). Here we report two in situ nuclear magnetic resonance (NMR) methods of studying redox flow batteries, which are applied to two redox-active electrolytes: 2,6-dihydroxyanthraquinone (DHAQ) and 4,4 '  -((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate (DBEAQ). In the first method, we monitor the changes in the H-1 NMR shift of the liquid electrolyte as it flows out of the electrochemical cell. In the second method, we observe the changes that occur simultaneously in the positive and negative electrodes in the full electrochemical cell. Using the bulk magnetization changes (observed via the H-1 NMR shift of the water resonance) and the line broadening of the H-1 shifts of the quinone resonances as a function of the state of charge, we measure the potential differences of the two single-electron couples, identify and quantify the rate of electron transfer between the reduced and oxidized species, and determine the extent of electron delocalization of the unpaired spins over the radical anions. These NMR techniques enable electrolyte decomposition and battery self-discharge to be explored in real time, and show that DHAQ is decomposed electrochemically via a reaction that can be minimized by limiting the voltage used on charging. We foresee applications of these NMR methods in understanding a wide range of redox processes in flow and other electrochemical systems.


  
Coherent electrical control of a single high-spin nucleus in silicon 期刊论文
NATURE, 2020, 579 (7798) : 205-+
作者:  Dedoussi, Irene C.;  Eastham, Sebastian D.;  Monier, Erwan;  Barrett, Steven R. H.
收藏  |  浏览/下载:10/0  |  提交时间:2020/07/03

Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, for example, in chemistry, medicine, materials science and mining. Nuclear spins also featured in early proposals for solid-state quantum computers(1) and demonstrations of quantum search(2) and factoring(3) algorithms. Scaling up such concepts requires controlling individual nuclei, which can be detected when coupled to an electron(4-6). However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods(7-9) relied on transducing electric signals into magnetic fields via the electron-nuclear hyperfine interaction, which severely affects nuclear coherence. Here we demonstrate the coherent quantum control of a single Sb-123 (spin-7/2) nucleus using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea proposed in 1961(10) but not previously realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction results in coherent nuclear spin transitions that are uniquely addressable owing to lattice strain. The spin dephasing time, 0.1 seconds, is orders of magnitude longer than those obtained by methods that require a coupled electron spin to achieve electrical driving. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots(11,12) could pave the way to scalable, nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields.


  
Actinide 2-metallabiphenylenes that satisfy Huckel's rule 期刊论文
NATURE, 2020, 578 (7796) : 563-+
作者:  Achar, Yathish Jagadheesh;  Adhil, Mohamood;  Choudhary, Ramveer;  Gilbert, Nick;  Foiani, Marco
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Aromaticity and antiaromaticity, as defined by Huckel'  s rule, are key ideas in organic chemistry, and are both exemplified in biphenylene(1-3)-a molecule that consists of two benzene rings joined by a four-membered ring at its core. Biphenylene analogues in which one of the benzene rings has been replaced by a different (4n + 2) pi-electron system have so far been associated only with organic compounds(4,5). In addition, efforts to prepare a zirconabiphenylene compound resulted in the isolation of a bis(alkyne) zirconocene complex instead(6). Here we report the synthesis and characterization of, to our knowledge, the first 2-metallabiphenylene compounds. Single-crystal X-ray diffraction studies reveal that these complexes have nearly planar, 11-membered metallatricycles with metrical parameters that compare well with those reported for biphenylene. Nuclear magnetic resonance spectroscopy, in addition to nucleus-independent chemical shift calculations, provides evidence that these complexes contain an antiaromatic cyclobutadiene ring and an aromatic benzene ring. Furthermore, spectroscopic evidence, Kohn-Sham molecular orbital compositions and natural bond orbital calculations suggest covalency and delocalization of the uranium f(2) electrons with the carbon-containing ligand.


The synthesis of uranium- and thorium-containing metallabiphenylenes demonstrates the ability of the actinides to stabilize aromatic/antiaromatic structures where transition metals have failed.