GSTDTAP

浏览/检索结果: 共215条,第1-10条 帮助

限定条件                
已选(0)清除 条数/页:   排序方式:
Experimental evidence of dispersal of invasive cyprinid inside waterfowl 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (27) : 15397-15399
作者:  Lovas-Kiss, Adam;  Vincze, Orsolya;  Loki, Viktor;  Paller-Kapusi, Felicia;  Halasi-Kovacs, Bela;  Kovacs, Gyula;  Green, Andy J.;  Lukacs, Balazs Andras
收藏  |  浏览/下载:8/0  |  提交时间:2020/06/29
long-distance dispersal  freshwater  fish distribution  invasion  endozoochory  
Origin of interannual variability in global mean sea level 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (25) : 13983-13990
作者:  Hamlington, Benjamin D.;  Piecuch, Christopher G.;  Reager, John T.;  Chandanpurkar, Hrishi;  Frederikse, Thomas;  Nerem, R. Steven;  Fasullo, John T.;  Cheon, Se-Hyeon
收藏  |  浏览/下载:6/0  |  提交时间:2020/06/16
sea level  climate variability  global mean sea level  satellite altimetry  
Insect herbivory dampens Subarctic birch forest C sink response to warming 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Silfver, Tarja;  Heiskanen, Lauri;  Aurela, Mika;  Myller, Kristiina;  Karhu, Kristiina;  Meyer, Nele;  Tuovinen, Juha-Pekka;  Oksanen, Elina;  Rousi, Matti;  Mikola, Juha
收藏  |  浏览/下载:10/0  |  提交时间:2020/05/25
Microplastics affect sedimentary microbial communities and nitrogen cycling 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Seeley, Meredith E.;  Song, Bongkeun;  Passie, Renia;  Hale, Robert C.
收藏  |  浏览/下载:2/0  |  提交时间:2020/05/13
Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range 期刊论文
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (19) : 10397-10405
作者:  Montgomery, Rebecca A.;  Rice, Karen E.;  Stefanski, Artur;  Rich, Roy L.;  Reich, Peter B.
收藏  |  浏览/下载:9/0  |  提交时间:2020/05/13
climate change  phenology  growing season length  boreal forest  temperate forest  
Iron-based binary ferromagnets for transverse thermoelectric conversion 期刊论文
NATURE, 2020, 581 (7806) : 53-+
作者:  Grun, Rainer;  Pike, Alistair;  McDermott, Frank;  Eggins, Stephen;  Mortimer, Graham;  Aubert, Maxime;  Kinsley, Lesley;  Joannes-Boyau, Renaud;  Rumsey, Michael;  Denys, Christiane;  Brink, James;  Clark, Tara;  Stringer, Chris
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Aluminium- and gallium-doped iron compounds show a large anomalous Nernst effect owing to a topological electronic structure, and their films are potentially suitable for designing low-cost, flexible microelectronic thermoelectric generators.


Thermoelectric generation using the anomalous Nernst effect (ANE) has great potential for application in energy harvesting technology because the transverse geometry of the Nernst effect should enable efficient, large-area and flexible coverage of a heat source. For such applications to be viable, substantial improvements will be necessary not only for their performance but also for the associated material costs, safety and stability. In terms of the electronic structure, the anomalous Nernst effect (ANE) originates from the Berry curvature of the conduction electrons near the Fermi energy(1,2). To design a large Berry curvature, several approaches have been considered using nodal points and lines in momentum space(3-10). Here we perform a high-throughput computational search and find that 25 percent doping of aluminium and gallium in alpha iron, a naturally abundant and low-cost element, dramatically enhances the ANE by a factor of more than ten, reaching about 4 and 6 microvolts per kelvin at room temperature, respectively, close to the highest value reported so far. The comparison between experiment and theory indicates that the Fermi energy tuning to the nodal web-a flat band structure made of interconnected nodal lines-is the key for the strong enhancement in the transverse thermoelectric coefficient, reaching a value of about 5 amperes per kelvin per metre with a logarithmic temperature dependence. We have also succeeded in fabricating thin films that exhibit a large ANE at zero field, which could be suitable for designing low-cost, flexible microelectronic thermoelectric generators(11-13).


  
Drought alters the biogeochemistry of boreal stream networks 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Gomez-Gener, Lluis;  Lupon, Anna;  Laudon, Hjalmar;  Sponseller, Ryan A.
收藏  |  浏览/下载:6/0  |  提交时间:2020/05/13
The effects of contemporaneous peer punishment on cooperation with the future 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Lohse, Johannes;  Waichman, Israel
收藏  |  浏览/下载:5/0  |  提交时间:2020/05/13
Invasive earthworms unlock arctic plant nitrogen limitation 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Blume-Werry, Gesche;  Krab, Eveline J.;  Olofsson, Johan;  Sundqvist, Maja K.;  Vaisanen, Maria;  Klaminder, Jonatan
收藏  |  浏览/下载:12/0  |  提交时间:2020/05/13
The fate of carbon in a mature forest under carbon dioxide enrichment 期刊论文
NATURE, 2020, 580 (7802) : 227-+
作者:  Sun, P. Z.;  Yang, Q.;  Kuang, W. J.;  Stebunov, Y. V.;  Xiong, W. Q.;  Yu, J.;  Nair, R. R.;  Katsnelson, M. I.;  Yuan, S. J.;  Grigorieva, I. V.;  Lozada-Hidalgo, M.;  Wang, F. C.;  Geim, A. K.
收藏  |  浏览/下载:71/0  |  提交时间:2020/05/13

Carbon dioxide enrichment of a mature forest resulted in the emission of the excess carbon back into the atmosphere via enhanced ecosystem respiration, suggesting that mature forests may be limited in their capacity to mitigate climate change.


Atmospheric carbon dioxide enrichment (eCO(2)) can enhance plant carbon uptake and growth(1-5), thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration(6). Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth(3-5), it is unclear whether mature forests respond to eCO(2) in a similar way. In mature trees and forest stands(7-10), photosynthetic uptake has been found to increase under eCO(2) without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO(2) unclear(4,5,7-11). Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO(2) exposure. We show that, although the eCO(2) treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO(2), and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.