GSTDTAP

浏览/检索结果: 共8条,第1-8条 帮助

限定条件                            
已选(0)清除 条数/页:   排序方式:
Brain control of humoral immune responses amenable to behavioural modulation 期刊论文
NATURE, 2020, 581 (7807)
作者:  Yang, C. H.;  Leon, R. C. C.;  Hwang, J. C. C.;  Saraiva, A.;  Tanttu, T.;  Huang, W.;  Lemyre, J. Camirand;  Chan, K. W.;  Tan, K. Y.;  Hudson, F. E.;  Itoh, K. M.;  Morello, A.;  Pioro-Ladriere, M.;  Laucht, A.;  Dzurak, A. S.
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

It has been speculated that brain activities might directly control adaptive immune responses in lymphoid organs, although there is little evidence for this. Here we show that splenic denervation in mice specifically compromises the formation of plasma cells during a T cell-dependent but not T cell-independent immune response. Splenic nerve activity enhances plasma cell production in a manner that requires B-cell responsiveness to acetylcholine mediated by the alpha 9 nicotinic receptor, and T cells that express choline acetyl transferase(1,2) probably act as a relay between the noradrenergic nerve and acetylcholine-responding B cells. We show that neurons in the central nucleus of the amygdala (CeA) and the paraventricular nucleus (PVN) that express corticotropin-releasing hormone (CRH) are connected to the splenic nerve  ablation or pharmacogenetic inhibition of these neurons reduces plasma cell formation, whereas pharmacogenetic activation of these neurons increases plasma cell abundance after immunization. In a newly developed behaviour regimen, mice are made to stand on an elevated platform, leading to activation of CeA and PVN CRH neurons and increased plasma cell formation. In immunized mice, the elevated platform regimen induces an increase in antigen-specific IgG antibodies in a manner that depends on CRH neurons in the CeA and PVN, an intact splenic nerve, and B cell expression of the alpha 9 acetylcholine receptor. By identifying a specific brain-spleen neural connection that autonomically enhances humoral responses and demonstrating immune stimulation by a bodily behaviour, our study reveals brain control of adaptive immunity and suggests the possibility to enhance immunocompetency by behavioural intervention.


Neuronal activities in the central amygdala and paraventricular nucleus are transmitted via the splenic nerve to increase plasma cell formation after immunization, and this process can be behaviourally enhanced in mice.


  
C9orf72 suppresses systemic and neural inflammation induced by gut bacteria 期刊论文
NATURE, 2020
作者:  Nikoo, Mohammad Samizadeh;  Jafari, Armin;  Perera, Nirmana;  Zhu, Minghua;  Santoruvo, Giovanni;  Matioli, Elison
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

A hexanucleotide-repeat expansion in C9ORF72 is the most common genetic variant that contributes to amyotrophic lateral sclerosis and frontotemporal dementia(1,2). The C9ORF72 mutation acts through gain- and loss-of-function mechanisms to induce pathways that are implicated in neural degeneration(3-9). The expansion is transcribed into a long repetitive RNA, which negatively sequesters RNA-binding proteins(5) before its non-canonical translation into neural-toxic dipeptide proteins(3,4). The failure of RNA polymerase to read through the mutation also reduces the abundance of the endogenous C9ORF72 gene product, which functions in endolysosomal pathways and suppresses systemic and neural inflammation(6-9). Notably, the effects of the repeat expansion act with incomplete penetrance in families with a high prevalence of amyotrophic lateral sclerosis or frontotemporal dementia, indicating that either genetic or environmental factors modify the risk of disease for each individual. Identifying disease modifiers is of considerable translational interest, as it could suggest strategies to diminish the risk of developing amyotrophic lateral sclerosis or frontotemporal dementia, or to slow progression. Here we report that an environment with reduced abundance of immune-stimulating bacteria(10,11) protects C9orf72-mutant mice from premature mortality and significantly ameliorates their underlying systemic inflammation and autoimmunity. Consistent with C9orf72 functioning to prevent microbiota from inducing a pathological inflammatory response, we found that reducing the microbial burden in mutant mice with broad spectrum antibiotics-as well as transplanting gut microflora from a protective environment-attenuated inflammatory phenotypes, even after their onset. Our studies provide further evidence that the microbial composition of our gut has an important role in brain health and can interact in surprising ways with well-known genetic risk factors for disorders of the nervous system.


Reduced abundance of immune-stimulating gut bacteria ameliorated the inflammatory and autoimmune phenotypes of mice with mutations in C9orf72, which in the human orthologue are linked to amyotrophic lateral sclerosis and frontotemporal dementia.


  
Rebuilding marine life 期刊论文
NATURE, 2020, 580 (7801) : 39-51
作者:  Carlos M. Duarte;  Susana Agusti;  Edward Barbier;  Gregory L. Britten;  Juan Carlos Castilla;  Jean-Pierre Gattuso;  Robinson W. Fulweiler;  Terry P. Hughes;  Nancy Knowlton;  Catherine E. Lovelock;  Heike K. Lotze;  Milica Predragovic;  Elvira Poloczanska;  Callum Roberts;  Boris Worm
收藏  |  浏览/下载:12/0  |  提交时间:2020/05/13

Sustainable Development Goal 14 of the United Nations aims to "conserve and sustainably use the oceans, seas and marine resources for sustainable development". Achieving this goal will require rebuilding the marine life-support systems that deliver the many benefits that society receives from a healthy ocean. Here we document the recovery of marine populations, habitats and ecosystems following past conservation interventions. Recovery rates across studies suggest that substantial recovery of the abundance, structure and function of marine life could be achieved by 2050, if major pressures-including climate change-are mitigated. Rebuilding marine life represents a doable Grand Challenge for humanity, an ethical obligation and a smart economic objective to achieve a sustainable future.


  
A plant genetic network for preventing dysbiosis in the phyllosphere 期刊论文
NATURE, 2020, 580 (7805) : 653-+
作者:  van den Brink, Susanne C.;  Alemany, Anna;  van Batenburg, Vincent;  Moris, Naomi;  Blotenburg, Marloes;  Vivie, Judith;  Baillie-Johnson, Peter;  Nichols, Jennifer;  Sonnen, Katharina F.;  Martinez Arias, Alfonso;  van Oudenaarden, Alexander
收藏  |  浏览/下载:59/0  |  提交时间:2020/07/03

Mutations in genes involved in immune signalling and vesicle trafficking cause defects in the leaf microbiome of Arabidopsis thaliana that result in damage to leaf tissues, suggesting mechanisms by which terrestrial plants control the level and diversity of endophytic phyllosphere microbiota.


The aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1  hereafter, mfec)(1), simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1(S205F) mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment.


  
Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations 期刊论文
NATURE, 2020, 580 (7803) : 339-+
作者:  Houben, Lothar;  Weissman, Haim;  Wolf, Sharon G.;  Rybtchinski, Boris
收藏  |  浏览/下载:16/0  |  提交时间:2020/07/03

The charge-conjugation and parity-reversal (CP) symmetry of fundamental particles is a symmetry between matter and antimatter. Violation of this CP symmetry was first observed in 1964(1), and CP violation in the weak interactions of quarks was soon established(2). Sakharov proposed(3) that CP violation is necessary to explain the observed imbalance of matter and antimatter abundance in the Universe. However, CP violation in quarks is too small to support this explanation. So far, CP violation has not been observed in non-quark elementary particle systems. It has been shown that CP violation in leptons could generate the matter-antimatter disparity through a process called leptogenesis(4). Leptonic mixing, which appears in the standard model'  s charged current interactions(5,6), provides a potential source of CP violation through a complex phase dCP, which is required by some theoretical models of leptogenesis(7-9). This CP violation can be measured in muon neutrino to electron neutrino oscillations and the corresponding antineutrino oscillations, which are experimentally accessible using accelerator-produced beams as established by the Tokai-to-Kamioka (T2K) and NOvA experiments(10,11). Until now, the value of dCP has not been substantially constrained by neutrino oscillation experiments. Here we report a measurement using long-baseline neutrino and antineutrino oscillations observed by the T2K experiment that shows a large increase in the neutrino oscillation probability, excluding values of dCP that result in a large increase in the observed antineutrino oscillation probability at three standard deviations (3 sigma). The 3 sigma confidence interval for delta(CP), which is cyclic and repeats every 2p, is [-3.41, -0.03] for the so-called normal mass ordering and [-2.54, -0.32] for the inverted mass ordering. Our results indicate CP violation in leptons and our method enables sensitive searches for matter-antimatter asymmetry in neutrino oscillations using accelerator-produced neutrino beams. Future measurements with larger datasets will test whether leptonic CP violation is larger than the CP violation in quarks.


  
The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis 期刊论文
NATURE, 2020, 580 (7804) : 530-+
作者:  Erler, Janine T.;  Bennewith, Kevin L.;  Nicolau, Monica;  Dornhofer, Nadja;  Kong, Christina;  Le, Quynh-Thu;  Chi, Jen-Tsan Ashley;  Jeffrey, Stefanie S.;  Giaccia, Amato J.
收藏  |  浏览/下载:28/0  |  提交时间:2020/07/03

Phosphorylation of INSIG1 and INSIG2 by PCK1 leads to a reduction in the binding of sterols, the activation of SREBP1 and SREBP2 and the downstream transcription of lipogenesis-associated genes that promote tumour growth.


Cancer cells increase lipogenesis for their proliferation and the activation of sterol regulatory element-binding proteins (SREBPs) has a central role in this process. SREBPs are inhibited by a complex composed of INSIG proteins, SREBP cleavage-activating protein (SCAP) and sterols in the endoplasmic reticulum. Regulation of the interaction between INSIG proteins and SCAP by sterol levels is critical for the dissociation of the SCAP-SREBP complex from the endoplasmic reticulum and the activation of SREBPs(1,2). However, whether this protein interaction is regulated by a mechanism other than the abundance of sterol-and in particular, whether oncogenic signalling has a role-is unclear. Here we show that activated AKT in human hepatocellular carcinoma (HCC) cells phosphorylates cytosolic phosphoenolpyruvate carboxykinase 1 (PCK1), the rate-limiting enzyme in gluconeogenesis, at Ser90. Phosphorylated PCK1 translocates to the endoplasmic reticulum, where it uses GTP as a phosphate donor to phosphorylate INSIG1 at Ser207 and INSIG2 at Ser151. This phosphorylation reduces the binding of sterols to INSIG1 and INSIG2 and disrupts the interaction between INSIG proteins and SCAP, leading to the translocation of the SCAP-SREBP complex to the Golgi apparatus, the activation of SREBP proteins (SREBP1 or SREBP2) and the transcription of downstream lipogenesis-related genes, proliferation of tumour cells, and tumorigenesis in mice. In addition, phosphorylation of PCK1 at Ser90, INSIG1 at Ser207 and INSIG2 at Ser151 is not only positively correlated with the nuclear accumulation of SREBP1 in samples from patients with HCC, but also associated with poor HCC prognosis. Our findings highlight the importance of the protein kinase activity of PCK1 in the activation of SREBPs, lipogenesis and the development of HCC.


  
Bacterial coexistence driven by motility and spatial competition 期刊论文
NATURE, 2020, 578 (7796) : 588-+
作者:  Micke, P.;  Leopold, T.;  King, S. A.;  Benkler, E.;  Spiess, L. J.;  Schmoeger, L.;  Schwarz, M.;  Crespo Lopez-Urrutia, J. R.;  Schmidt, P. O.
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Elucidating elementary mechanisms that underlie bacterial diversity is central to ecology(1,2) and microbiome research(3). Bacteria are known to coexist by metabolic specialization(4), cooperation(5) and cyclic warfare(6-8). Many species are also motile(9), which is studied in terms of mechanism(10,11), benefit(12,13), strategy(14,15), evolution(16,17) and ecology(18,19). Indeed, bacteria often compete for nutrient patches that become available periodically or by random disturbances(2,20,21). However, the role of bacterial motility in coexistence remains unexplored experimentally. Here we show that-for mixed bacterial populations that colonize nutrient patches-either population outcompetes the other when low in relative abundance. This inversion of the competitive hierarchy is caused by active segregation and spatial exclusion within the patch: a small fast-moving population can outcompete a large fast-growing population by impeding its migration into the patch, while a small fast-growing population can outcompete a large fast-moving population by expelling it from the initial contact area. The resulting spatial segregation is lost for weak growth-migration trade-offs and a lack of virgin space, but is robust to population ratio, density and chemotactic ability, and is observed in both laboratory and wild strains. These findings show that motility differences and their trade-offs with growth are sufficient to promote diversity, and suggest previously undescribed roles for motility in niche formation and collective expulsion-containment strategies beyond individual search and survival.


In mixed bacterial populations that colonize nutrient patches, a growth-migration trade-off can lead to spatial exclusion that provides an advantage to populations that become rare, thereby stabilizing the community.


  
An orbital water-ice cycle on comet 67P from colour changes 期刊论文
NATURE, 2020, 578 (7793) : 49-+
作者:  Oh, Myoung Hwan;  Cho, Min Gee;  Chung, Dong Young;  Park, Inchul;  Kwon, Youngwook Paul;  Ophus, Colin;  Kim, Dokyoon;  Kim, Min Gyu;  Jeong, Beomgyun;  Gu, X. Wendy;  Jo, Jinwoung;  Yoo, Ji Mun;  Hong, Jaeyoung;  McMains, Sara;  Kang, Kisuk;  Sung, Yung-Eun;  Alivisatos, A. Paul;  Hyeon, Taeghwan
收藏  |  浏览/下载:52/0  |  提交时间:2020/07/03

Solar heating of a cometary surface provides the energy necessary to sustain gaseous activity, through which dust is removed(1,2). In this dynamical environment, both the coma(3,4) and the nucleus(5,6) evolve during the orbit, changing their physical and compositional properties. The environment around an active nucleus is populated by dust grains with complex and variegated shapes(7), lifted and diffused by gases freed from the sublimation of surface ices(8,9). The visible colour of dust particles is highly variable: carbonaceous organic material-rich grains(10) appear red while magnesium silicate-rich(11,12) and water-ice-rich(13,14) grains appear blue, with some dependence on grain size distribution, viewing geometry, activity level and comet family type. We know that local colour changes are associated with grain size variations, such as in the bluer jets made of submicrometre grains on comet Hale-Bopp(15) or in the fragmented grains in the coma(16) of C/1999 S4 (LINEAR). Apart from grain size, composition also influences the coma'  s colour response, because transparent volatiles can introduce a substantial blueing in scattered light, as observed in the dust particles ejected after the collision of the Deep Impact probe with comet 9P/Tempel 1(17). Here we report observations of two opposite seasonal colour cycles in the coma and on the surface of comet 67P/Churyumov-Gerasimenko through its perihelion passage(18). Spectral analysis indicates an enrichment of submicrometre grains made of organic material and amorphous carbon in the coma, causing reddening during the passage. At the same time, the progressive removal of dust from the nucleus causes the exposure of more pristine and bluish icy layers on the surface. Far from the Sun, we find that the abundance of water ice on the nucleus is reduced owing to redeposition of dust and dehydration of the surface layer while the coma becomes less red.