GSTDTAP

浏览/检索结果: 共584条,第1-10条 帮助

限定条件                            
已选(0)清除 条数/页:   排序方式:
How big is big enough? Surprising responses of a semiarid grassland to increasing deluge size 期刊论文
Global Change Biology, 2020
作者:  Alison K. Post;  Alan K. Knapp
收藏  |  浏览/下载:6/0  |  提交时间:2020/12/28
Wildfire smoke, a potential infectious agent 期刊论文
Science, 2020
作者:  Leda N. Kobziar;  George R. Thompson
收藏  |  浏览/下载:27/0  |  提交时间:2020/12/22
Climatic drivers of (changes in) bat migration phenology at Bracken Cave (USA) 期刊论文
Global Change Biology, 2020
作者:  Birgen Haest;  Phillip M. Stepanian;  Charlotte E. Wainwright;  Felix Liechti;  Silke Bauer
收藏  |  浏览/下载:5/0  |  提交时间:2020/11/24
On the inter‐ and intra‐annual variability of ecosystem evapotranspiration and water use efficiency of an oak savanna and annual grassland subjected to booms and busts in rainfall 期刊论文
Global Change Biology, 2020
作者:  Dennis Baldocchi;  Siyan Ma;  Joe Verfaillie
收藏  |  浏览/下载:7/0  |  提交时间:2020/11/09
Temperature dependence of metabolic rate in tropical and temperate aquatic insects: Support for the Climate Variability Hypothesis in mayflies but not stoneflies 期刊论文
Global Change Biology, 2020
作者:  Alisha A. Shah;  H. Arthur Woods;  Justin C. Havird;  Andrea C. Encalada;  Alexander S. Flecker;  W. Chris Funk;  Juan M. Guayasamin;  Boris C. Kondratieff;  N. LeRoy Poff;  Steven A. Thomas;  Kelly R. Zamudio;  Cameron K. Ghalambor
收藏  |  浏览/下载:9/0  |  提交时间:2020/11/09
Undermining CDC 期刊论文
Science, 2020
作者:  Charles Piller
收藏  |  浏览/下载:3/0  |  提交时间:2020/10/26
Funding fix: Spend time 期刊论文
Science, 2020
作者:  Charu Lata;  Ruty Mehrian-Shai;  Bo Cao;  Naga Rama Kothapalli;  Garima Singh;  Daniel Ari Friedman;  Felix Man-Him Cheung;  Wagner Eduardo Richter;  Samuel Nathan Kirshner;  Felicia Beardsley;  Xiao-Yu Wu
收藏  |  浏览/下载:7/0  |  提交时间:2020/10/12
Geographic variation in responses of kelp forest communities of the California Current to recent climatic changes 期刊论文
Global Change Biology, 2020
作者:  Rodrigo Beas‐;  Luna;  Fiorenza Micheli;  C. Brock Woodson;  Mark Carr;  Dan Malone;  Jorge Torre;  Charles Boch;  Jennifer E. Caselle;  Matt Edwards;  Jan Freiwald;  Scott L. Hamilton;  Arturo Hernandez;  Brenda Konar;  Kristy J. Kroeker;  Julio Lorda;  Gabriela Montañ;  o‐;  Moctezuma;  Guillermo Torres‐;  Moye
收藏  |  浏览/下载:17/0  |  提交时间:2020/09/14
Mountain stoneflies may tolerate warming streams: Evidence from organismal physiology and gene expression 期刊论文
Global Change Biology, 2020
作者:  Scott Hotaling;  Alisha A. Shah;  Kerry L. McGowan;  Lusha M. Tronstad;  J. Joseph Giersch;  Debra S. Finn;  H. Arthur Woods;  Michael E. Dillon;  Joanna L. Kelley
收藏  |  浏览/下载:6/0  |  提交时间:2020/08/25
Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial 期刊论文
NATURE, 2020, 583 (7817) : 554-+
作者:  T. Blackburn;  G. H. Edwards;  S. Tulaczyk;  M. Scudder;  G. Piccione;  B. Hallet;  N. McLean;  J. C. Zachos;  B. Cheney;  J. T. Babbe
收藏  |  浏览/下载:21/0  |  提交时间:2020/08/09

Uranium isotopes in subglacial precipitates from the Wilkes Basin of the East Antarctic Ice Sheet reveal ice retreat during a warm Pleistocene interglacial period about 400,000 years ago.


Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth'  s past interglacial warm periods(1-3). About 400,000 years ago, during the interglacial period known as Marine Isotopic Stage 11 (MIS11), the global temperature was 1 to 2 degrees Celsius greater(2)and sea level was 6 to 13 metres higher(1,3). Sea level estimates in excess of about 10 metres, however, have been discounted because these require a contribution from the East Antarctic Ice Sheet(3), which has been argued to have remained stable for millions of years before and includes MIS11(4,5). Here we show how the evolution of(234)U enrichment within the subglacial waters of East Antarctica recorded the ice sheet'  s response to MIS11 warming. Within the Wilkes Basin, subglacial chemical precipitates of opal and calcite record accumulation of(234)U (the product of rock-water contact within an isolated subglacial reservoir) up to 20 times higher than that found in marine waters. The timescales of(234)U enrichment place the inception of this reservoir at MIS11. Informed by the(234)U cycling observed in the Laurentide Ice Sheet, where(234)U accumulated during periods of ice stability(6)and was flushed to global oceans in response to deglaciation(7), we interpret our East Antarctic dataset to represent ice loss within the Wilkes Basin at MIS11. The(234)U accumulation within the Wilkes Basin is also observed in the McMurdo Dry Valleys brines(8-10), indicating(11)that the brine originated beneath the adjacent East Antarctic Ice Sheet. The marine origin of brine salts(10)and bacteria(12)implies that MIS11 ice loss was coupled with marine flooding. Collectively, these data indicate that during one of the warmest Pleistocene interglacials, the ice sheet margin at the Wilkes Basin retreated to near the precipitate location, about 700 kilometres inland from the current position of the ice margin, which-assuming current ice volumes-would have contributed about 3 to 4 metres(13)to global sea levels.