GSTDTAP

浏览/检索结果: 共5条,第1-5条 帮助

限定条件                    
已选(0)清除 条数/页:   排序方式:
Map clusters of diseases to tackle multimorbidity 期刊论文
NATURE, 2020, 579 (7800) : 494-496
作者:  Abbott, Alison
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

Many people now have two or more diseases at once. It is time to rethink funding, research, publishing, training and treatment for this growing problem.


Many people now have two or more diseases at once. It is time to rethink funding, research, publishing, training and treatment for this growing problem.


  
Video-based AI for beat-to-beat assessment of cardiac function 期刊论文
NATURE, 2020, 580 (7802) : 252-+
作者:  Pleguezuelos-Manzano, Cayetano;  Puschhof, Jens;  Huber, Axel Rosendahl;  van Hoeck, Arne;  Wood, Henry M.;  Nomburg, Jason;  Gurjao, Carino;  Manders, Freek;  Dalmasso, Guillaume;  Stege, Paul B.;  Paganelli, Fernanda L.;  Geurts, Maarten H.;  Beumer, Joep;  Mizutani, Tomohiro;  Miao, Yi;  van der Linden, Reinier;  van der Elst, Stefan;  Garcia, K. Christopher;  Top, Janetta;  Willems, Rob J. L.;  Giannakis, Marios;  Bonnet, Richard;  Quirke, Phil;  Meyerson, Matthew;  Cuppen, Edwin;  van Boxtel, Ruben;  Clevers, Hans
收藏  |  浏览/下载:116/0  |  提交时间:2020/07/03

A video-based deep learning algorithm-EchoNet-Dynamic-accurately identifies subtle changes in ejection fraction and classifies heart failure with reduced ejection fraction using information from multiple cardiac cycles.


Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease(1), screening for cardiotoxicity(2) and decisions regarding the clinical management of patients with a critical illness(3). However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training(4,5). Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.


  
Fully hardware-implemented memristor convolutional neural network 期刊论文
NATURE, 2020, 577 (7792) : 641-+
作者:  Yoshioka-Kobayashi, Kumiko;  Matsumiya, Marina;  Niino, Yusuke;  Isomura, Akihiro;  Kori, Hiroshi;  Miyawaki, Atsushi;  Kageyama, Ryoichiro
收藏  |  浏览/下载:39/0  |  提交时间:2020/07/03

Memristor-enabled neuromorphic computing systems provide a fast and energy-efficient approach to training neural networks(1-4). However, convolutional neural networks (CNNs)-one of the most important models for image recognition(5)-have not yet been fully hardware-implemented using memristor crossbars, which are cross-point arrays with a memristor device at each intersection. Moreover, achieving software-comparable results is highly challenging owing to the poor yield, large variation and other non-ideal characteristics of devices(6-9). Here we report the fabrication of high-yield, high-performance and uniform memristor crossbar arrays for the implementation of CNNs, which integrate eight 2,048-cell memristor arrays to improve parallel-computing efficiency. In addition, we propose an effective hybrid-training method to adapt to device imperfections and improve the overall system performance. We built a five-layer memristor-based CNN to perform MNIST10 image recognition, and achieved a high accuracy of more than 96 per cent. In addition to parallel convolutions using different kernels with shared inputs, replication of multiple identical kernels in memristor arrays was demonstrated for processing different inputs in parallel. The memristor-based CNN neuromorphic system has an energy efficiency more than two orders of magnitude greater than that of state-of-the-art graphics-processing units, and is shown to be scalable to larger networks, such as residual neural networks. Our results are expected to enable a viable memristor-based non-von Neumann hardware solution for deep neural networks and edge computing.


  
Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks 期刊论文
NATURE, 2018, 559 (7714) : 370-+
作者:  Cherry, Kevin M.;  Qian, Lulu
收藏  |  浏览/下载:4/0  |  提交时间:2019/11/27
Go beyond bias training 期刊论文
NATURE, 2018, 557 (7705) : 299-301
作者:  Mendoza-Denton, Rodolfo;  Pat, Colette;  Richards, Mark
收藏  |  浏览/下载:0/0  |  提交时间:2019/11/27