GSTDTAP

浏览/检索结果: 共11条,第1-10条 帮助

限定条件                        
已选(0)清除 条数/页:   排序方式:
HBO1 is required for the maintenance of leukaemia stem cells 期刊论文
NATURE, 2020, 577 (7789) : 266-+
作者:  MacPherson, Laura;  Anokye, Juliana;  Yeung, Miriam M.;  Lam, Enid Y. N.;  Chan, Yih-Chih;  Weng, Chen-Fang;  Yeh, Paul;  Knezevic, Kathy;  Butler, Miriam S.;  Hoegl, Annabelle;  Chan, Kah-Lok;  Burr, Marian L.;  Gearing, Linden J.;  Willson, Tracy;  Liu, Joy;  Choi, Jarny;  Yang, Yuqing;  Bilardi, Rebecca A.;  Falk, Hendrik;  Nghi Nguyen;  Stupple, Paul A.;  Peat, Thomas S.;  Zhang, Ming;  de Silva, Melanie;  Carrasco-Pozo, Catalina;  Avery, Vicky M.;  Khoo, Poh Sim;  Dolezal, Olan;  Dennis, Matthew L.;  Nuttall, Stewart;  Surjadi, Regina;  Newman, Janet;  Ren, Bin;  Leaver, David J.;  Sun, Yuxin;  Baell, Jonathan B.;  Dovey, Oliver;  Vassiliou, George S.;  Grebien, Florian;  Dawson, Sarah-Jane;  Street, Ian P.;  Monahan, Brendon J.;  Burns, Christopher J.;  Choudhary, Chunaram;  Blewitt, Marnie E.;  Voss, Anne K.;  Thomas, Tim;  Dawson, Mark A.
收藏  |  浏览/下载:17/0  |  提交时间:2020/07/03

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)(1). Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


  
The proteome landscape of the kingdoms of life 期刊论文
NATURE, 2020
作者:  Arzi, Anat;  Rozenkrantz, Liron;  Gorodisky, Lior;  Rozenkrantz, Danit;  Holtzman, Yael;  Ravia, Aharon;  Bekinschtein, Tristan A.;  Galperin, Tatyana;  Krimchansky, Ben-Zion;  Cohen, Gal;  Oksamitni, Anna;  Aidinoff, Elena;  Sacher, Yaron;  Sobel, Noam
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Proteins carry out the vast majority of functions in all biological domains, but for technological reasons their large-scale investigation has lagged behind the study of genomes. Since the first essentially complete eukaryotic proteome was reported(1), advances in mass-spectrometry-based proteomics(2)have enabled increasingly comprehensive identification and quantification of the human proteome(3-6). However, there have been few comparisons across species(7,8), in stark contrast with genomics initiatives(9). Here we use an advanced proteomics workflow-in which the peptide separation step is performed by a microstructured and extremely reproducible chromatographic system-for the in-depth study of 100 taxonomically diverse organisms. With two million peptide and 340,000 stringent protein identifications obtained in a standardized manner, we double the number of proteins with solid experimental evidence known to the scientific community. The data also provide a large-scale case study for sequence-based machine learning, as we demonstrate by experimentally confirming the predicted properties of peptides fromBacteroides uniformis. Our results offer a comparative view of the functional organization of organisms across the entire evolutionary range. A remarkably high fraction of the total proteome mass in all kingdoms is dedicated to protein homeostasis and folding, highlighting the biological challenge of maintaining protein structure in all branches of life. Likewise, a universally high fraction is involved in supplying energy resources, although these pathways range from photosynthesis through iron sulfur metabolism to carbohydrate metabolism. Generally, however, proteins and proteomes are remarkably diverse between organisms, and they can readily be explored and functionally compared at www.proteomesoflife.org.


  
Preparation of cyclohexene isotopologues and stereoisotopomers from benzene 期刊论文
NATURE, 2020, 581 (7808) : 288-+
作者:  Shimazaki, Yuya;  Schwartz, Ido;  Watanabe, Kenji;  Taniguchi, Takashi;  Kroner, Martin;  Imamoglu, Atac
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

The hydrogen isotopes deuterium (D) and tritium (T) have become essential tools in chemistry, biology and medicine(1). Beyond their widespread use in spectroscopy, mass spectrometry and mechanistic and pharmacokinetic studies, there has been considerable interest in incorporating deuterium into drug molecules(1). Deutetrabenazine, a deuterated drug that is promising for the treatment of Huntington'  s disease(2), was recently approved by the United States'  Food and Drug Administration. The deuterium kinetic isotope effect, which compares the rate of a chemical reaction for a compound with that for its deuterated counterpart, can be substantial(1,3,4). The strategic replacement of hydrogen with deuterium can affect both the rate of metabolism and the distribution of metabolites for a compound(5), improving the efficacy and safety of a drug. The pharmacokinetics of a deuterated compound depends on the location(s) of deuterium. Although methods are available for deuterium incorporation at both early and late stages of the synthesis of a drug(6,7), these processes are often unselective and the stereoisotopic purity can be difficult to measure(7,8). Here we describe the preparation of stereoselectively deuterated building blocks for pharmaceutical research. As a proof of concept, we demonstrate a four-step conversion of benzene to cyclohexene with varying degrees of deuterium incorporation, via binding to a tungsten complex. Using different combinations of deuterated and proteated acid and hydride reagents, the deuterated positions on the cyclohexene ring can be controlled precisely. In total, 52 unique stereoisotopomers of cyclohexene are available, in the form of ten different isotopologues. This concept can be extended to prepare discrete stereoisotopomers of functionalized cyclohexenes. Such systematic methods for the preparation of pharmacologically active compounds as discrete stereoisotopomers could improve the pharmacological and toxicological properties of drugs and provide mechanistic information related to their distribution and metabolism in the body.


Cyclohexene isotopologues and stereoisotopomers with varying degrees of deuteration are formed by binding a tungsten complex to benzene, which facilitates the selective incorporation of deuterium into any position on the ring.


  
TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR7-9 期刊论文
NATURE, 2020, 581 (7808) : 316-+
作者:  Kokail, C.;  Maier, C.;  van Bijnen, R.;  Brydges, T.;  Joshi, M. K.;  Jurcevic, P.;  Muschik, C. A.;  Silvi, P.;  Blatt, R.;  Roos, C. F.;  Zoller, P.
收藏  |  浏览/下载:27/0  |  提交时间:2020/07/03

The interaction between TASL and SLC15A4 links endolysosomal Toll-like receptors to the transcription factor IRF5, providing a mechanistic explanation for the involvement of the complex in systemic lupus erythematosus.


Toll-like receptors (TLRs) have a crucial role in the recognition of pathogens and initiation of immune responses(1-3). Here we show that a previously uncharacterized protein encoded by CXorf21-a gene that is associated with systemic lupus erythematosus(4,5)-interacts with the endolysosomal transporter SLC15A4, an essential but poorly understood component of the endolysosomal TLR machinery also linked to autoimmune disease(4,6-9). Loss of this type-I-interferon-inducible protein, which we refer to as '  TLR adaptor interacting with SLC15A4 on the lysosome'  (TASL), abrogated responses to endolysosomal TLR agonists in both primary and transformed human immune cells. Deletion of SLC15A4 or TASL specifically impaired the activation of the IRF pathway without affecting NF-kappa B and MAPK signalling, which indicates that ligand recognition and TLR engagement in the endolysosome occurred normally. Extensive mutagenesis of TASL demonstrated that its localization and function relies on the interaction with SLC15A4. TASL contains a conserved pLxIS motif (in which p denotes a hydrophilic residue and x denotes any residue) that mediates the recruitment and activation of IRF5. This finding shows that TASL is an innate immune adaptor for TLR7, TLR8 and TLR9 signalling, revealing a clear mechanistic analogy with the IRF3 adaptors STING, MAVS and TRIF10,11. The identification of TASL as the component that links endolysosomal TLRs to the IRF5 transcription factor via SLC15A4 provides a mechanistic explanation for the involvement of these proteins in systemic lupus erythematosus(12-14).


  
Detection of metastable electronic states by Penning trap mass spectrometry 期刊论文
NATURE, 2020, 581 (7806) : 42-+
作者:  Rauch, Jennifer N.;  Luna, Gabriel;  Guzman, Elmer;  Audouard, Morgane;  Challis, Collin;  Sibih, Youssef E.;  Leshuk, Carolina;  Hernandez, Israel;  Wegmann, Susanne;  Hyman, Bradley T.;  Gradinaru, Viviana;  Kampmann, Martin;  Kosik, Kenneth S.
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

State-of-the-art optical clocks(1) achieve precisions of 10(-18) or better using ensembles of atoms in optical lattices(2,3) or individual ions in radio-frequency traps(4,5). Promising candidates for use in atomic clocks are highly charged ions(6) (HCIs) and nuclear transitions(7), which are largely insensitive to external perturbations and reach wavelengths beyond the optical range(8) that are accessible to frequency combs(9). However, insufficiently accurate atomic structure calculations hinder the identification of suitable transitions in HCIs. Here we report the observation of a long-lived metastable electronic state in an HCI by measuring the mass difference between the ground and excited states in rhenium, providing a non-destructive, direct determination of an electronic excitation energy. The result is in agreement with advanced calculations. We use the high-precision Penning trap mass spectrometer PENTATRAP to measure the cyclotron frequency ratio of the ground state to the metastable state of the ion with a precision of 10(-11)-an improvement by a factor of ten compared with previous measurements(10,11). With a lifetime of about 130 days, the potential soft-X-ray frequency reference at 4.96 x 10(16) hertz (corresponding to a transition energy of 202 electronvolts) has a linewidth of only 5 x 10(-8) hertz and one of the highest electronic quality factors (10(24)) measured experimentally so far. The low uncertainty of our method will enable searches for further soft-X-ray clock transitions(8,12) in HCIs, which are required for precision studies of fundamental physics(6).


Penning trap mass spectrometry is used to measure the electronic transition energy from a long-lived metastable state to the ground state in highly charged rhenium ions with a precision of 10(-11).


  
Mass spectrometry for future atomic clocks 期刊论文
NATURE, 2020, 581 (7806) : 35-36
作者:  Padian, Kevin
收藏  |  浏览/下载:3/0  |  提交时间:2020/07/03

Measurement of a metastable electronic state in a highly charged ion.


Highly charged ions could form the basis of the next generation of ultra-precise clocks, using electronic transitions in the ions as the '  pendulum'  . An ingenious method for characterizing such transitions has been reported.


  
Mass-spectrometry-based draft of the Arabidopsis proteome 期刊论文
NATURE, 2020
作者:  Vasanthakumar, Ajithkumar;  Chisanga, David;  Blume, Jonas;  Gloury, Renee;  Britt, Kara;  Henstridge, Darren C.;  Zhan, Yifan;  Torres, Santiago Valle;  Liene, Sebastian;  Collins, Nicholas;  Cao, Enyuan;  Sidwell, Tom;  Li, Chaoran;  Spallanzani, Raul German;  Liao, Yang;  Beavis, Paul A.;  Gebhardt, Thomas;  Trevaskis, Natalie;  Nutt, Stephen L.;  Zajac, Jeffrey D.;  Davey, Rachel A.;  Febbraio, Mark A.;  Mathis, Diane;  Shi, Wei;  Kallies, Axel
收藏  |  浏览/下载:38/0  |  提交时间:2020/07/03

Plants are essential for life and are extremely diverse organisms with unique molecular capabilities(1). Here we present a quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana. Our analysis provides initial answers to how many genes exist as proteins (more than 18,000), where they are expressed, in which approximate quantities (a dynamic range of more than six orders of magnitude) and to what extent they are phosphorylated (over 43,000 sites). We present examples of how the data may be used, such as to discover proteins that are translated from short open-reading frames, to uncover sequence motifs that are involved in the regulation of protein production, and to identify tissue-specific protein complexes or phosphorylation-mediated signalling events. Interactive access to this resource for the plant community is provided by the ProteomicsDB and ATHENA databases, which include powerful bioinformatics tools to explore and characterize Arabidopsis proteins, their modifications and interactions.


A quantitative atlas of the transcriptomes, proteomes and phosphoproteomes of 30 tissues of the model plant Arabidopsis thaliana provides a valuable resource for plant research.


  
Global chemical effects of the microbiome include new bile-acid conjugations 期刊论文
NATURE, 2020, 579 (7797) : 123-+
作者:  Dossin, Francois;  Pinheiro, Ines;  Zylicz, Jan J.;  Roensch, Julia;  Collombet, Samuel;  Le Saux, Agnes;  Chelmicki, Tomasz;  Attia, Mikael;  Kapoor, Varun;  Zhan, Ye;  Dingli, Florent;  Loew, Damarys;  Mercher, Thomas;  Dekker, Job;  Heard, Edith
收藏  |  浏览/下载:31/0  |  提交时间:2020/07/03

Metabolomics data from germ-free and specific-pathogen-free mice reveal effects of the microbiome on host chemistry, identifying conjugations of bile acids that are also enriched in patients with inflammatory bowel disease or cystic fibrosis.


A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease(1-9). Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units(10)), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches(11-13) to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry(14). These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.


  
Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny 期刊论文
NATURE, 2019, 574 (7776) : 103-+
作者:  Cappellini, Enrico;  Welker, Frido;  Pandolfi, Luca;  Ramos-Madrigal, Jazmin;  Samodova, Diana;  Ruther, Patrick L.;  Fotakis, Anna K.;  Lyon, David;  Moreno-Mayar, J. Victor;  Bukhsianidze, Maia;  Jersie-Christensen, Rosa Rakownikow;  Mackie, Meaghan;  Ginolhac, Aurelien;  Ferring, Reid;  Tappen, Martha;  Palkopoulou, Eleftheria;  Dickinson, Marc R.;  Stafford, Thomas W., Jr.;  Chan, Yvonne L.;  Gotherstrom, Anders;  Nathan, Senthilvel K. S. S.;  Heintzman, Peter D.;  Kapp, Joshua D.;  Kirillova, Irina;  Moodley, Yoshan;  Agusti, Jordi;  Kahlke, Ralf-Dietrich;  Kiladze, Gocha;  Martinez-Navarro, Bienvenido;  Liu, Shanlin;  Velasco, Marcela Sandoval;  Sinding, Mikkel-Holger S.;  Kelstrup, Christian D.;  Allentoft, Morten E.;  Orlando, Ludovic;  Penkman, Kirsty;  Shapiro, Beth;  Rook, Lorenzo;  Dalen, Love;  Gilbert, M. Thomas P.;  Olsen, Jesper V.;  Lordkipanidze, David;  Willerslev, Eske
收藏  |  浏览/下载:17/0  |  提交时间:2019/11/27
A global resource allocation strategy governs growth transition kinetics of Escherichia coli 期刊论文
NATURE, 2017, 551 (7678) : 119-+
作者:  Erickson, David W.;  Schink, Severin J.;  Patsalo, Vadim;  Williamson, James R.;  Gerland, Ulrich;  Hwa, Terence
收藏  |  浏览/下载:10/0  |  提交时间:2019/11/27