GSTDTAP

浏览/检索结果: 共59条,第1-10条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Coupling delay controls synchronized oscillation in the segmentation clock 期刊论文
NATURE, 2020
作者:  Yoshioka-Kobayashi, Kumiko;  Matsumiya, Marina;  Niino, Yusuke;  Isomura, Akihiro;  Kori, Hiroshi;  Miyawaki, Atsushi;  Kageyama, Ryoichiro
收藏  |  浏览/下载:8/0  |  提交时间:2020/07/03

Individual cellular activities fluctuate but are constantly coordinated at the population level via cell-cell coupling. A notable example is the somite segmentation clock, in which the expression of clock genes (such as Hes7) oscillates in synchrony between the cells that comprise the presomitic mesoderm (PSM)(1,2). This synchronization depends on the Notch signalling pathway  inhibiting this pathway desynchronizes oscillations, leading to somite fusion(3-7). However, how Notch signalling regulates the synchronicity of HES7 oscillations is unknown. Here we establish a live-imaging system using a new fluorescent reporter (Achilles), which we fuse with HES7 to monitor synchronous oscillations in HES7 expression in the mouse PSM at a single-cell resolution. Wild-type cells can rapidly correct for phase fluctuations in HES7 oscillations, whereas the absence of the Notch modulator gene lunatic fringe (Lfng) leads to a loss of synchrony between PSM cells. Furthermore, HES7 oscillations are severely dampened in individual cells of Lfng-null PSM. However, when Lfng-null PSM cells were completely dissociated, the amplitude and periodicity of HES7 oscillations were almost normal, which suggests that LFNG is involved mostly in cell-cell coupling. Mixed cultures of control and Lfng-null PSM cells, and an optogenetic Notch signalling reporter assay, revealed that LFNG delays the signal-sending process of intercellular Notch signalling transmission. These results-together with mathematical modelling-raised the possibility that Lfng-null PSM cells shorten the coupling delay, thereby approaching a condition known as the oscillation or amplitude death of coupled oscillators(8). Indeed, a small compound that lengthens the coupling delay partially rescues the amplitude and synchrony of HES7 oscillations in Lfng-null PSM cells. Our study reveals a delay control mechanism of the oscillatory networks involved in somite segmentation, and indicates that intercellular coupling with the correct delay is essential for synchronized oscillation.


Monitoring cells of the mouse presomitic mesoderm using the Achilles reporter fused to HES7 sheds light on the mechanisms that underpin synchronous oscillations in the expression of clock genes between neighbouring cells.


  
Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis 期刊论文
NATURE, 2020, 577 (7789) : 260-+
作者:  Kakiuchi, Nobuyuki;  Yoshida, Kenichi;  Uchino, Motoi;  Kihara, Takako;  Akaki, Kotaro;  Inoue, Yoshikage;  Kawada, Kenji;  Nagayama, Satoshi;  Yokoyama, Akira;  Yamamoto, Shuji;  Matsuura, Minoru;  Horimatsu, Takahiro;  Hirano, Tomonori;  Goto, Norihiro;  Takeuchi, Yasuhide;  Ochi, Yotaro;  Shiozawa, Yusuke;  Kogure, Yasunori;  Watatani, Yosaku;  Fujii, Yoichi;  Kim, Soo Ki;  Kon, Ayana;  Kataoka, Keisuke;  Yoshizato, Tetsuichi;  Nakagawa, Masahiro M.;  Yoda, Akinori;  Nanya, Yasuhito;  Makishima, Hideki;  Shiraishi, Yuichi;  Chiba, Kenichi;  Tanaka, Hiroko;  Sanada, Masashi;  Sugihara, Eiji;  Sato, Taka-aki;  Maruyama, Takashi;  Miyoshi, Hiroyuki;  Taketo, Makoto Mark;  Oishi, Jun;  Inagaki, Ryosaku;  Ueda, Yutaka;  Okamoto, Shinya;  Okajima, Hideaki;  Sakai, Yoshiharu;  Sakurai, Takaki;  Haga, Hironori;  Hirota, Seiichi;  Ikeuchi, Hiroki;  Nakase, Hiroshi;  Marusawa, Hiroyuki;  Chiba, Tsutomu;  Takeuchi, Osamu;  Miyano, Satoru;  Seno, Hiroshi;  Ogawa, Seishi
收藏  |  浏览/下载:79/0  |  提交时间:2020/07/03

Chronic inflammation is accompanied by recurring cycles of tissue destruction and repair and is associated with an increased risk of cancer(1-3). However, how such cycles affect the clonal composition of tissues, particularly in terms of cancer development, remains unknown. Here we show that in patients with ulcerative colitis, the inflamed intestine undergoes widespread remodelling by pervasive clones, many of which are positively selected by acquiring mutations that commonly involve the NFKBIZ, TRAF3IP2, ZC3H12A, PIGR and HNRNPF genes and are implicated in the downregulation of IL-17 and other pro-inflammatory signals. Mutational profiles vary substantially between colitis-associated cancer and non-dysplastic tissues in ulcerative colitis, which indicates that there are distinct mechanisms of positive selection in both tissues. In particular, mutations in NFKBIZ are highly prevalent in the epithelium of patients with ulcerative colitis but rarely found in both sporadic and colitis-associated cancer, indicating that NFKBIZ-mutant cells are selected against during colorectal carcinogenesis. In further support of this negative selection, we found that tumour formation was significantly attenuated in Nfkbiz-mutant mice and cell competition was compromised by disruption of NFKBIZ in human colorectal cancer cells. Our results highlight common and discrete mechanisms of clonal selection in inflammatory tissues, which reveal unexpected cancer vulnerabilities that could potentially be exploited for therapeutics in colorectal cancer.


  
Molecular tuning of CO2-to-ethylene conversion 期刊论文
NATURE, 2020, 577 (7791) : 509-+
作者:  Li, Fengwang;  39;Brien, Colin P.
收藏  |  浏览/下载:13/0  |  提交时间:2020/07/03

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources(1). However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge(2). Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity(3-5), and this has recently been explored for the reaction on copper by controlling morphology(6), grain boundaries(7), facets(8), oxidation state(9) and dopants(10). Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far(9)), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums(11), adsorbed on copper. We find that the adhered molecules improve the stabilization of an '  atop-bound'  CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.


Electrocatalytic reduction of CO2 over copper can be made highly selective by '  tuning'  the copper surface with adsorbed organic molecules to stabilize intermediates for carbon-based fuels such as ethylene


  
Metabolic heterogeneity confers differences in melanoma metastatic potential 期刊论文
NATURE, 2020, 577 (7788) : 115-+
作者:  Tasdogan, Alpaslan;  Faubert, Brandon;  Ramesh, Vijayashree;  Ubellacker, Jessalyn M.;  Shen, Bo;  Solmonson, Ashley;  Murphy, Malea M.;  Gu, Zhimin;  Gu, Wen;  Martin, Misty;  Kasitinon, Stacy Y.;  Vandergriff, Travis;  Mathews, Thomas P.;  Zhao, Zhiyu;  Schadendorf, Dirk;  DeBerardinis, Ralph J.;  Morrison, Sean J.
收藏  |  浏览/下载:14/0  |  提交时间:2020/07/03

Metastasis requires cancer cells to undergo metabolic changes that are poorly understood(1-3). Here we show that metabolic differences among melanoma cells confer differences in metastatic potential as a result of differences in the function of the MCT1 transporter. In vivo isotope tracing analysis in patient-derived xenografts revealed differences in nutrient handling between efficiently and inefficiently metastasizing melanomas, with circulating lactate being a more prominent source of tumour lactate in efficient metastasizers. Efficient metastasizers had higher levels of MCT1, and inhibition of MCT1 reduced lactate uptake. MCT1 inhibition had little effect on the growth of primary subcutaneous tumours, but resulted in depletion of circulating melanoma cells and reduced the metastatic disease burden in patient-derived xenografts and in mouse melanomas. In addition, inhibition of MCT1 suppressed the oxidative pentose phosphate pathway and increased levels of reactive oxygen species. Antioxidants blocked the effects of MCT1 inhibition on metastasis. MCT1(high) and MCT1(-/low) cells from the same melanomas had similar capacities to form subcutaneous tumours, but MCT1(high) cells formed more metastases after intravenous injection. Metabolic differences among cancer cells thus confer differences in metastatic potential as metastasizing cells depend on MCT1 to manage oxidative stress.


  
RGF1 controls root meristem size through ROS signalling 期刊论文
NATURE, 2020, 577 (7788) : 85-+
作者:  Yamada, Masashi;  Han, Xinwei;  Benfey, Philip N.
收藏  |  浏览/下载:11/0  |  提交时间:2020/07/03

The stem cell niche and the size of the root meristem in plants are maintained by intercellular interactions and signalling networks involving a peptide hormone, root meristem growth factor 1 (RGF1)(1). Understanding how RGF1 regulates the development of the root meristem is essential for understanding stem cell function. Although five receptors for RGF1 have been identified(2-4), the downstream signalling mechanism remains unknown. Here we report a series of signalling events that follow RGF1 activity. We find that the RGF1-receptor pathway controls the distribution of reactive oxygen species (ROS) along the developmental zones of the Arabidopsis root. We identify a previously uncharacterized transcription factor, RGF1-INDUCIBLE TRANSCRIPTION FACTOR 1 (RITF1), that has a central role in mediating RGF1 signalling. Manipulating RITF1 expression leads to the redistribution of ROS along the root developmental zones. Changes in ROS distribution in turn enhance the stability of the PLETHORA2 protein, a master regulator of root stem cells. Our results thus clearly depict a signalling cascade that is initiated by RGF1, linking this peptide to mechanisms that regulate ROS.


  
IL-17a promotes sociability in mouse models of neurodevelopmental disorders 期刊论文
NATURE, 2020, 577 (7789) : 249-+
作者:  Reed, Michael Douglas;  Yim, Yeong Shin;  Wimmer, Ralf D.;  Kim, Hyunju;  Ryu, Changhyeon;  Welch, Gwyneth Margaret;  Andina, Matias;  King, Hunter Oren;  Waisman, Ari;  Halassa, Michael M.;  Huh, Jun R.;  Choi, Gloria B.
收藏  |  浏览/下载:12/0  |  提交时间:2020/07/03

A subset of children with autism spectrum disorder appear to show an improvement in their behavioural symptoms during the course of a fever, a sign of systemic inflammation(1,2). Here we elucidate the molecular and neural mechanisms that underlie the beneficial effects of inflammation on social behaviour deficits in mice. We compared an environmental model of neurodevelopmental disorders in which mice were exposed to maternal immune activation (MIA) during embryogenesis(3,4) with mouse models that are genetically deficient for contactin-associated protein-like 2 (Cntnap2)(5), fragile X mental retardation-1 (Fmr1)(6) or Sh3 and multiple ankyrin repeat domains 3 (Shank3)(7). We establish that the social behaviour deficits in offspring exposed to MIA can be temporarily rescued by the inflammatory response elicited by the administration of lipopolysaccharide (LPS). This behavioural rescue was accompanied by a reduction in neuronal activity in the primary somatosensory cortex dysgranular zone (S1DZ), the hyperactivity of which was previously implicated in the manifestation of behavioural phenotypes associated with offspring exposed to MIA(8). By contrast, we did not observe an LPS-induced rescue of social deficits in the monogenic models. We demonstrate that the differences in responsiveness to the LPS treatment between the MIA and the monogenic models emerge from differences in the levels of cytokine production. LPS treatment in monogenic mutant mice did not induce amounts of interleukin-17a (IL-17a) comparable to those induced in MIA offspring  bypassing this difference by directly delivering IL-17a into S1DZ was sufficient to promote sociability in monogenic mutant mice as well as in MIA offspring. Conversely, abrogating the expression of IL-17 receptor subunit a (IL-17Ra) in the neurons of the S1DZ eliminated the ability of LPS to reverse the sociability phenotypes in MIA offspring. Our data support a neuroimmune mechanism that underlies neurodevelopmental disorders in which the production of IL-17a during inflammation can ameliorate the expression of social behaviour deficits by directly affecting neuronal activity in the central nervous system.


  
Fourth defence molecule completes antiviral line-up 期刊论文
NATURE, 2020, 581 (7808) : 266-267
作者:  Marshall, Michael
收藏  |  浏览/下载:4/0  |  提交时间:2020/07/03

Toll-like receptors can initiate an immune response when they detect signs of a viral or microbial threat. New insight into how such receptor activation drives defence programs should aid our efforts to understand autoimmune diseases.


Key adaptor protein found in a pathway that drives interferon production.


  
A metabolic pathway for bile acid dehydroxylation by the gut microbiome 期刊论文
NATURE, 2020
作者:  Zhong, Miao;  Tran, Kevin;  Min, Yimeng;  Wang, Chuanhao;  Wang, Ziyun;  Dinh, Cao-Thang;  De Luna, Phil;  Yu, Zongqian;  Rasouli, Armin Sedighian;  Brodersen, Peter;  Sun, Song;  Voznyy, Oleksandr;  Tan, Chih-Shan;  Askerka, Mikhail;  Che, Fanglin;  Liu, Min;  Seifitokaldani, Ali;  Pang, Yuanjie;  Lo, Shen-Chuan;  Ip, Alexander;  Ulissi, Zachary;  Sargent, Edward H.
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

The biosynthetic pathway that produces the secondary bile acids DCA and LCA in human gut microbes has been fully characterized, engineered into another bacterial host, and used to confer DCA production in germ-free mice-an important proof-of-principle for the engineering of gut microbial pathways.


The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 mu M and are known to block the growth ofClostridium difficile(1), promote hepatocellular carcinoma(2)and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref.(3)). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids(4)  the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A-B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe-S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway intoClostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool.


  
A neurotransmitter produced by gut bacteria modulates host sensory behaviour 期刊论文
NATURE, 2020
作者:  Zhao, Xiaoxu;  Song, Peng;  Wang, Chengcai;  Riis-Jensen, Anders C.;  Fu, Wei;  Deng, Ya;  Wan, Dongyang;  Kang, Lixing;  Ning, Shoucong;  Dan, Jiadong;  Venkatesan, T.;  Liu, Zheng;  Zhou, Wu;  Thygesen, Kristian S.;  Luo, Xin;  Pennycook, Stephen J.;  Loh, Kian Ping
收藏  |  浏览/下载:9/0  |  提交时间:2020/07/03

A neuromodulator produced by commensalProvidenciabacteria that colonize the gut ofCaenorhabditis elegansmimics the functions of the cognate host molecule to manipulate a sensory decision of the host.


Animals coexist in commensal, pathogenic or mutualistic relationships with complex communities of diverse organisms, including microorganisms(1). Some bacteria produce bioactive neurotransmitters that have previously been proposed to modulate nervous system activity and behaviours of their hosts(2,3). However, the mechanistic basis of this microbiota-brain signalling and its physiological relevance are largely unknown. Here we show that inCaenorhabditis elegans, the neuromodulator tyramine produced by commensalProvidenciabacteria, which colonize the gut, bypasses the requirement for host tyramine biosynthesis and manipulates a host sensory decision. Bacterially produced tyramine is probably converted to octopamine by the host tyramine beta-hydroxylase enzyme. Octopamine, in turn, targets the OCTR-1 octopamine receptor on ASH nociceptive neurons to modulate an aversive olfactory response. We identify the genes that are required for tyramine biosynthesis inProvidencia, and show that these genes are necessary for the modulation of host behaviour. We further find thatC. eleganscolonized byProvidenciapreferentially select these bacteria in food choice assays, and that this selection bias requires bacterially produced tyramine and host octopamine signalling. Our results demonstrate that a neurotransmitter produced by gut bacteria mimics the functions of the cognate host molecule to override host control of a sensory decision, and thereby promotes fitness of both the host and the microorganism.


  
Molecular basis of beta-arrestin coupling to formoterol-bound beta(1)-adrenoceptor 期刊论文
NATURE, 2020
作者:  Pulliainen, Jouni;  Luojus, Kari;  Derksen, Chris;  Mudryk, Lawrence;  Lemmetyinen, Juha;  Salminen, Miia;  Ikonen, Jaakko;  Takala, Matias;  Cohen, Juval;  Smolander, Tuomo;  Norberg, Johannes
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

The beta(1)-adrenoceptor (beta(1)AR) is a G-protein-coupled receptor (GPCR) that couples(1)to the heterotrimeric G protein G(s). G-protein-mediated signalling is terminated by phosphorylation of the C terminus of the receptor by GPCR kinases (GRKs) and by coupling of beta-arrestin 1 (beta arr1, also known as arrestin 2), which displaces G(s)and induces signalling through the MAP kinase pathway(2). The ability of synthetic agonists to induce signalling preferentially through either G proteins or arrestins-known as biased agonism(3)-is important in drug development, because the therapeutic effect may arise from only one signalling cascade, whereas the other pathway may mediate undesirable side effects(4). To understand the molecular basis for arrestin coupling, here we determined the cryo-electron microscopy structure of the beta(1)AR-beta arr1 complex in lipid nanodiscs bound to the biased agonist formoterol(5), and the crystal structure of formoterol-bound beta(1)AR coupled to the G-protein-mimetic nanobody(6)Nb80. beta arr1 couples to beta(1)AR in a manner distinct to that(7)of G(s)coupling to beta(2)AR-the finger loop of beta arr1 occupies a narrower cleft on the intracellular surface, and is closer to transmembrane helix H7 of the receptor when compared with the C-terminal alpha 5 helix of G(s). The conformation of the finger loop in beta arr1 is different from that adopted by the finger loop of visual arrestin when it couples to rhodopsin(8). beta(1)AR coupled to beta arr1 shows considerable differences in structure compared with beta(1)AR coupled to Nb80, including an inward movement of extracellular loop 3 and the cytoplasmic ends of H5 and H6. We observe weakened interactions between formoterol and two serine residues in H5 at the orthosteric binding site of beta(1)AR, and find that formoterol has a lower affinity for the beta(1)AR-beta arr1 complex than for the beta(1)AR-G(s)complex. The structural differences between these complexes of beta(1)AR provide a foundation for the design of small molecules that could bias signalling in the beta-adrenoceptors.


A cryo-electron microscopy structure of the beta 1-adrenoceptor coupled to beta-arrestin 1 and activated by the biased agonist formoterol, as well as the crystal structure of a related formoterol-bound adrenoreceptor, provide insights into biased signalling in these systems.