GSTDTAP

浏览/检索结果: 共6条,第1-6条 帮助

限定条件        
已选(0)清除 条数/页:   排序方式:
Abrupt increase in harvested forest area over Europe after 2015 期刊论文
NATURE, 2020, 583 (7814) : 72-+
作者:  Guido Ceccherini;  Gregory Duveiller;  Giacomo Grassi;  Guido Lemoine;  Valerio Avitabile;  Roberto Pilli;  Alessandro Cescatti
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/06

Fine-scale satellite data are used to quantify forest harvest rates in 26 European countries, finding an increase in harvested forest area of 49% and an increase in biomass loss of 69% between 2011-2015 and 2016-2018.


Forests provide a series of ecosystem services that are crucial to our society. In the European Union (EU), forests account for approximately 38% of the total land surface(1). These forests are important carbon sinks, and their conservation efforts are vital for the EU'  s vision of achieving climate neutrality by 2050(2). However, the increasing demand for forest services and products, driven by the bioeconomy, poses challenges for sustainable forest management. Here we use fine-scale satellite data to observe an increase in the harvested forest area (49 per cent) and an increase in biomass loss (69 per cent) over Europe for the period of 2016-2018 relative to 2011-2015, with large losses occurring on the Iberian Peninsula and in the Nordic and Baltic countries. Satellite imagery further reveals that the average patch size of harvested area increased by 34 per cent across Europe, with potential effects on biodiversity, soil erosion and water regulation. The increase in the rate of forest harvest is the result of the recent expansion of wood markets, as suggested by econometric indicators on forestry, wood-based bioenergy and international trade. If such a high rate of forest harvest continues, the post-2020 EU vision of forest-based climate mitigation may be hampered, and the additional carbon losses from forests would require extra emission reductions in other sectors in order to reach climate neutrality by 2050(3).


  
Intensive farming drives long-term shifts in avian community composition 期刊论文
NATURE, 2020, 579 (7799) : 393-+
作者:  Oh, Eugene;  Mark, Kevin G.;  Mocciaro, Annamaria;  Watson, Edmond R.;  Prabu, J. Rajan;  Cha, Denny D.;  Kampmann, Martin;  Gamarra, Nathan;  Zhou, Coral Y.;  Rape, Michael
收藏  |  浏览/下载:15/0  |  提交时间:2020/05/13

Variation in vegetation and climate affects the long-term changes in bird communities in intensive-agriculture habitats, but not in diversified-agriculture or natural-forest habitats, by changing the local colonization and extinction rates.


Agricultural practices constitute both the greatest cause of biodiversity loss and the greatest opportunity for conservation(1,2), given the shrinking scope of protected areas in many regions. Recent studies have documented the high levels of biodiversity-across many taxa and biomes-that agricultural landscapes can support over the short term(1,3,4). However, little is known about the long-term effects of alternative agricultural practices on ecological communities(4,5) Here we document changes in bird communities in intensive-agriculture, diversified-agriculture and natural-forest habitats in 4 regions of Costa Rica over a period of 18 years. Long-term directional shifts in bird communities were evident in intensive- and diversified-agricultural habitats, but were strongest in intensive-agricultural habitats, where the number of endemic and International Union for Conservation of Nature (IUCN) Red List species fell over time. All major guilds, including those involved in pest control, pollination and seed dispersal, were affected. Bird communities in intensive-agricultural habitats proved more susceptible to changes in climate, with hotter and drier periods associated with greater changes in community composition in these settings. These findings demonstrate that diversified agriculture can help to alleviate the long-term loss of biodiversity outside natural protected areas(1).


  
Global conservation of species' niches 期刊论文
NATURE, 2020, 580 (7802) : 232-+
作者:  Guo, Xiaoyan;  Aviles, Giovanni;  Liu, Yi;  Tian, Ruilin;  Unger, Bret A.;  Lin, Yu-Hsiu T.;  Wiita, Arun P.;  Xu, Ke;  Correia, M. Almira;  Kampmann, Martin
收藏  |  浏览/下载:29/0  |  提交时间:2020/07/03

Environmental change is rapidly accelerating, and many species will need to adapt to survive(1). Ensuring that protected areas cover populations across a broad range of environmental conditions could safeguard the processes that lead to such adaptations(1-3). However, international conservation policies have largely neglected these considerations when setting targets for the expansion of protected areas(4). Here we show that-of 19,937 vertebrate species globally(5-8)-the representation of environmental conditions across their habitats in protected areas (hereafter, niche representation) is inadequate for 4,836 (93.1%) amphibian, 8,653 (89.5%) bird and 4,608 (90.9%) terrestrial mammal species. Expanding existing protected areas to cover these gaps would encompass 33.8% of the total land surface-exceeding the current target of 17% that has been adopted by governments. Priority locations for expanding the system of protected areas to improve niche representation occur in global biodiversity hotspots(9), including Colombia, Papua New Guinea, South Africa and southwest China, as well as across most of the major land masses of the Earth. Conversely, we also show that planning for the expansion of protected areas without explicitly considering environmental conditions would marginally reduce the land area required to 30.7%, but that this would lead to inadequate niche representation for 7,798 (39.1%) species. As the governments of the world prepare to renegotiate global conservation targets, policymakers have the opportunity to help to maintain the adaptive potential of species by considering niche representation within protected areas(1,2).


Protected areas would need to expand to 33.8% of the total land surface to adequately represent environmental conditions across the habitats of amphibians, birds and terrestrial mammals, far exceeding the current 17% target.


  
Tracking of marine predators to protect Southern Ocean ecosystems 期刊论文
NATURE, 2020
作者:  Kim, Eugene;  Kerssemakers, Jacob;  Shaltiel, Indra A.;  Haering, Christian H.;  Dekker, Cees
收藏  |  浏览/下载:19/0  |  提交时间:2020/07/03

Tracking data from 17 marine predator species in the Southern Ocean are used to identify Areas of Ecological Significance, the protection of which could help to mitigate increasing pressures on Southern Ocean ecosystems.


Southern Ocean ecosystems are under pressure from resource exploitation and climate change(1,2). Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40 degrees S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.


  
Biodiversity theory backed by island bird data 期刊论文
NATURE, 2020, 579 (7797) : 36-37
作者:  AlQuraishi, Mohammed
收藏  |  浏览/下载:7/0  |  提交时间:2020/07/03

Analysis of a unique global data set reveals how the species diversity of birds is affected by the properties of archipelagos and offers a way to test an influential theory. Has this improved our understanding of island biodiversity patterns?


  
China takes centre stage in global biodiversity push 期刊论文
NATURE, 2020, 578 (7795) : 345-346
作者:  Wang, Lin;  Wu, Juehui;  Li, Jun;  Yang, Hua;  Tang, Tianqi;  Liang, Haijiao;  Zuo, Mianyong;  Wang, Jie;  Liu, Haipeng;  Liu, Feng;  Chen, Jianxia;  Liu, Zhonghua;  Wang, Yang;  Peng, Cheng;  Wu, Xiangyang;  Zheng, Ruijuan;  Huang, Xiaochen;  Ran, Yajun;  Rao, Zihe;  Ge, Baoxue
收藏  |  浏览/下载:15/0  |  提交时间:2020/07/03

A major United Nations summit could see China push for ambitious targets and spotlights the country'  s own conservation efforts.


A major United Nations summit could see China push for ambitious targets and spotlights the country'  s own conservation efforts.