GSTDTAP

浏览/检索结果: 共620条,第1-10条 帮助

限定条件    
已选(0)清除 条数/页:   排序方式:
Materials and pathways of the organic carbon cycle through time 期刊论文
NATURE GEOSCIENCE, 2020
作者:  Galvez, Matthieu E.;  Fischer, Woodward W.;  Jaccard, Samuel L.;  Eglinton, Timothy I.
收藏  |  浏览/下载:14/0  |  提交时间:2020/08/09
Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial 期刊论文
NATURE, 2020, 583 (7817) : 554-+
作者:  T. Blackburn;  G. H. Edwards;  S. Tulaczyk;  M. Scudder;  G. Piccione;  B. Hallet;  N. McLean;  J. C. Zachos;  B. Cheney;  J. T. Babbe
收藏  |  浏览/下载:19/0  |  提交时间:2020/08/09

Uranium isotopes in subglacial precipitates from the Wilkes Basin of the East Antarctic Ice Sheet reveal ice retreat during a warm Pleistocene interglacial period about 400,000 years ago.


Efforts to improve sea level forecasting on a warming planet have focused on determining the temperature, sea level and extent of polar ice sheets during Earth'  s past interglacial warm periods(1-3). About 400,000 years ago, during the interglacial period known as Marine Isotopic Stage 11 (MIS11), the global temperature was 1 to 2 degrees Celsius greater(2)and sea level was 6 to 13 metres higher(1,3). Sea level estimates in excess of about 10 metres, however, have been discounted because these require a contribution from the East Antarctic Ice Sheet(3), which has been argued to have remained stable for millions of years before and includes MIS11(4,5). Here we show how the evolution of(234)U enrichment within the subglacial waters of East Antarctica recorded the ice sheet'  s response to MIS11 warming. Within the Wilkes Basin, subglacial chemical precipitates of opal and calcite record accumulation of(234)U (the product of rock-water contact within an isolated subglacial reservoir) up to 20 times higher than that found in marine waters. The timescales of(234)U enrichment place the inception of this reservoir at MIS11. Informed by the(234)U cycling observed in the Laurentide Ice Sheet, where(234)U accumulated during periods of ice stability(6)and was flushed to global oceans in response to deglaciation(7), we interpret our East Antarctic dataset to represent ice loss within the Wilkes Basin at MIS11. The(234)U accumulation within the Wilkes Basin is also observed in the McMurdo Dry Valleys brines(8-10), indicating(11)that the brine originated beneath the adjacent East Antarctic Ice Sheet. The marine origin of brine salts(10)and bacteria(12)implies that MIS11 ice loss was coupled with marine flooding. Collectively, these data indicate that during one of the warmest Pleistocene interglacials, the ice sheet margin at the Wilkes Basin retreated to near the precipitate location, about 700 kilometres inland from the current position of the ice margin, which-assuming current ice volumes-would have contributed about 3 to 4 metres(13)to global sea levels.


  
Multiscale petrographic heterogeneity and their implications for the nanoporous system of the Wufeng-Longmaxi shales in Jiaoshiba area, Southeast China: Response to depositional-diagenetic process 期刊论文
GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2020, 132 (7-8) : 1704-1721
作者:  Wang, Yuxuan;  Xu, Shang;  Hao, Fang;  Zhang, Baiqiao;  Shu, Zhiguo;  Gou, Qiyang;  Lu, Yangbo;  Cong, Fuyun
收藏  |  浏览/下载:14/0  |  提交时间:2020/08/18
Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal 期刊论文
NATURE GEOSCIENCE, 2020, 13 (7) : 489-+
作者:  Fogwill, C. J.;  Turney, C. S. M.;  Menviel, L.;  Baker, A.;  Weber, M. E.;  Ellis, B.;  Thomas, Z. A.;  Golledge, N. R.;  Etheridge, D.;  Rubino, M.;  Thornton, D. P.;  van Ommen, T. D.;  Moy, A. D.;  Curran, M. A. J.;  Davies, S.;  Bird, M., I;  Munksgaard, N. C.;  Rootes, C. M.;  Millman, H.;  Vohra, J.;  Rivera, A.;  Mackintosh, A.;  Pike, J.;  Hall, I. R.;  Bagshaw, E. A.;  Rainsley, E.;  Bronk-Ramsey, C.;  Montenari, M.;  Cage, A. G.;  Harris, M. R. P.;  Jones, R.;  Power, A.;  Love, J.;  Young, J.;  Weyrich, L. S.;  Cooper, A.
收藏  |  浏览/下载:14/0  |  提交时间:2020/06/29
Future trends in stratosphere-to-troposphere transport in CCMI models 期刊论文
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (11) : 6883-6901
作者:  Abalos, Marta;  Orbe, Clara;  Kinnison, Douglas E.;  Plummer, David;  Oman, Luke D.;  Joeckel, Patrick;  Morgenstern, Olaf;  Garcia, Rolando R.;  Zeng, Guang;  Stone, Kane A.;  Dameris, Martin
收藏  |  浏览/下载:11/0  |  提交时间:2020/06/16
The Influence of Magma Mixing on the Composition of Andesite Magmas and Silicic Eruption Style 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (13)
作者:  Hodge, K. F.;  Jellinek, A. M.
收藏  |  浏览/下载:9/0  |  提交时间:2020/06/16
andesite  effusive volcanism  explosive volcanism  magma mixing  rheological variations  viscosity variations  
Global Heat Uptake by Inland Waters 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Vanderkelen, I;  van Lipzig, N. P. M.;  Lawrence, D. M.;  Droppers, B.;  Golub, M.;  Gosling, S. N.;  Janssen, A. B. G.;  Marce, R.;  Schmied, H. Mueller;  Perroud, M.;  Pierson, D.;  Pokhrel, Y.;  Satoh, Y.;  Schewe, J.;  Seneviratne, S., I;  Stepanenko, V. M.;  Tan, Z.;  Woolway, R., I;  Thiery, W.
收藏  |  浏览/下载:12/0  |  提交时间:2020/06/09
heat uptake  inland waters  lakes  rivers  reservoirs  
CO2 Dissolution Trapping Rates in Heterogeneous Porous Media 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (12)
作者:  Gilmore, K. A.;  Neufeld, J. A.;  Bickle, M. J.
收藏  |  浏览/下载:9/0  |  提交时间:2020/06/01
geological carbon storage  dissolution trapping  heterogeneous porous media  
Causal mechanism of injection-induced earthquakes through the M-w 5.5 Pohang earthquake case study 期刊论文
NATURE COMMUNICATIONS, 2020, 11 (1)
作者:  Yeo, I. W.;  Brown, M. R. M.;  Ge, S.;  Lee, K. K.
收藏  |  浏览/下载:5/0  |  提交时间:2020/06/01
Integrating data mining and transmission theory in the ecology of infectious diseases 期刊论文
ECOLOGY LETTERS, 2020, 23 (8) : 1178-1188
作者:  Han, Barbara A.;  39;Regan, Suzanne M.
收藏  |  浏览/下载:8/0  |  提交时间:2020/05/25
Boosted regression  disease dynamics  disease macroecology  pathogen transmission  random forest  statistical learning  zoonosis  zoonotic spillover